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Abstract. We construct the limiting mixed Hodge structure of a degeneration of compact Kähler manifolds over

the unit disk with a possibly non-reduced normal crossing singular central fiber via holonomic D-modules, which
generalizes some results of Steenbrink. Our limiting mixed Hodge structure does not carry a Q-structure; instead we

use sesquilinear pairings on D-modules as a replacement. The associated graded quotient of the weight filtration of

the limiting mixed Hodge structure can be computed by the cohomology of the cyclic coverings of certain intersections
of components of the central fiber.

1. Introduction

1.1. Limits of Hodge structures. Consider a degeneration of compact Kähler manifolds f ∶X →∆ over the unit
disk ∆. The cohomology of each smooth fiber carries a polarizable Hodge structure. It is natural to ask how the
family of Hodge structures on the cohomologies of smooth fibers degenerate and how the cohomology of the central
fiber relates to that of nearby fibers. These are two classical and central questions in Hodge theory. Before Saito’s
theory of mixed Hodge modules [Sai88, Sai90], Schmid showed the existence of a limiting mixed Hodge structure
for an abstract polarized variation of Hodge structures over the unit disk [Sch73] using Lie theoretic methods, and
later Cattani, Kapplan and Schmid extend this to polydisks [CKS86]. For the variation of Hodge structures coming
from a semistable family of Kähler manifolds over a 1-dimensional base, the limiting mixed Hodge structure was first
established by Steenbrink [Ste76] whose construction is equivalent to Schmid’s in [Sch73] but purely geometric:

Theorem (Steenbrink). Let f ∶ X → ∆ be a proper holomorphic morphism which is smooth away from the origin,
whose central fiber Y is reduced simple normal crossing. Suppose X is Kähler of dimension n + 1. Then the hy-
percohomology Hk(X,Ω●+n

X/∆(logY )∣Y ) of the relative log de Rham complex restricted on Y admits a limiting mixed

Hodge structure with a Q-structure whose graded quotient of the weight filtration can be expressed in terms of the
cohomology of certain intersections of components of Y via spectral sequences.

Let us briefly explain Steenbrink’s result. Suppose we are in the setting of the theorem but Y is possibly non-
reduced. Denote by X∗ = X ∖ Y and ∆∗ = ∆ ∖ {0}. Then the higher direct image of the relative de Rham complex
Rkf∗Ω●+n

X∗/∆∗ is a vector bundle, where the shifting is needed to adopt the convention of the theory of perverse sheaves

and D-modules; it underlies a polarizable variation of Hodge structure of weight n over the punctured disk ∆∗. Recall
that a polarized variation of Hodge structure of weight n over a complex manifold Z is an integrable connection (V,∇)
together with a so-called Hodge filtration by subundles F ●V and a flat Hermitian pairing S ∶ V ⊗C V → C∞

Z satisfying
(1) Griffith transversality ∇F ●V = ΩZ ⊗ F ●−1V, and (2) each fiber of (V, F ●V, S) is a polarized Hodge structure of
weight n. However, the higher direct image of the relative de Rham complex Ω●+n

X/∆ does not give anything interesting

when Y is singular. Steenbrink discovered a natural extension of the vector bundle Rkf∗Ω●+n
X∗/∆∗ over the origin via

the relative log de Rham complex. Let

ΩX/∆(logY ) = ΩX(logY )/f∗Ω∆(log 0) and Ωp
X/∆

(logY ) =
p

⋀ΩX/∆(logY ),
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where ΩX(logY ) is the sheaf of meromorphic one-forms with log poles along Y . Then the relative log de Rham
complex is defined to be

Ω●+n
X/∆(logY ) = {OX → ΩX/∆(logY ) → ⋯ → ΩnX/∆(logY )}[n].

Steenbrink showed in [Ste76] that Rkf∗Ω●
X/∆(logY ) is a locally free integrable logarithmic connection with a pole

along the origin whose residue R has eigenvalues in [0,1) ∩Q for each k ∈ Z. It follows from Grauert’s theorem that
there exists a canonical isomorphism

Rkf∗Ω●+n
X/∆(logY ) ⊗C(p) ≃Hk(X,Ω●+n

X/∆(logY )∣Xp)

for every fiber Xp over any point p ∈ ∆, where C(p) denotes the residue field of p. The vector bundle Rkf∗Ω●
X/∆(logY )

is Deligne’s canonical extension [Del70] of Rkf∗Ω●+n
X∗/∆∗ with eigenvalues of the residues of the log connection in the

interval in [0,1). Now we can think of the space Hk(X,Ω●+n
X/∆(logY )∣Y ) as a canonical specialization of Hk(Xp,Ω

●+n
Xp

)
for general fibers Xp. In fact, the limiting Hodge filtration is induced by the stupid filtration defined by,

F −`Ω●+n
X/∆(logY ) = {Ω−`

X/∆(logY ) → ⋯ → ΩnX/∆(logY )}[n + `],

for each ` ∈ Z. This extends the Hodge filtration F ●Rkf∗Ω●+n
X∗/∆∗ for the variation of Hodge structure Rkf∗Ω●+n

X∗/∆∗

which is also induced by the stupid filtration on the complex Ω●+n
X∗/∆∗ . When Y is reduced, the residue R is nilpo-

tent on the hypercohomology of Ω●+n
X/∆(logY )∣Y for every k so it gives a monodromy filtration W● = W●(R) on

Hk(X,Ω●+n
X/∆(logY )∣Y ) uniquely characterized by two properies: (1) RW● ⊂ W●−2 and (2) Rr ∶ grWr → grW−r is an

isomorphism for every r ≥ 0. The filtration W●(R) is called the monodromy filtration because exp (−2π
√
−1R) is

the monodromy induced by the generator of the fundamental group of ∆∗. Steenbrink showed that the monodromy
filtration is the weight filtration of the limiting mixed Hodge structure when f is projective, and this was later
generalized to the Kähler case by Guillén and Navarro Aznar in [GNA90].

Steenbrink later pointed out the limiting mixed Hodge structure he constructed only depends on the log structure
associated to the semistable family f ∶ X → ∆ [Ste95]. Inspired by the idea in [Ste95], Fujisawa extended Steen-
brink’s results in [Ste76,Ste95] to semistable Kähler families over the polydisk and furthermore to the log geometry
setting [Fuj99,Fuj08,Fuj14]. Recently, Nakkajima announced a simpler proof of Fujisawa’s results [Nak21].

1.2. Main results. We revisit Steenbrink’s theorem and construct the limiting mixed Hodge structure of the de-
generation over the unit disk ∆ with a simple normal crossing central fiber Y which is possibly non-reduced via
the theory of holonomic D-modules. Although we can run Mumford’s semistable reduction [KKMSD73], which is a
sequence of base changes, normalizations and blow-ups, on every degeneration of Kähler manifolds over the unit disk
to obtain a semistable degeneration, it is still interesting to remove the assumption that Y is reduced in Steenbrink’s
theorem since the semistable reduction may not be canonical. When Y is non-reduced, the residue is no longer
nilpotent; instead, we need to consider the Jordan-Chevallay decomposition of R. Here is our main theorem:

Theorem A. Let f ∶ X → ∆ be a proper holomorphic morphism which smooth away from the origin, whose central
fiber Y is possibly non-reduced simple normal crossing. Assume that X is Kähler of dimension n + 1. Let Rn (resp.
Rs) denote the nilpotent (resp. semisimple) part of the Jordan-Chevalley decomposition of the residue operator R on

⊕kH
k(X,Ω●+n

X/∆(logY )∣Y ). Then each eigenspace of Rs on

⊕
k,`

grW` H
k(X,Ω●+n

X/∆(logY )∣Y )

underlies a limiting polarized bigraded Hodge-Lefschetz structure over C of central weight n, where W● =W●(Rn) is
the monodromy filtration associated to Rn.



LIMITS OF HODGE STRUCTURES VIA HOLONOMIC D-MODULES 3

A polarized bigraded Hodge-Lefschetz structure is essentially a direct sum of polarized Hodge structures of different
weights preserving by an sl2(C)×sl2(C)-action. In the setting of Theorem A, the sl2(C)×sl2(C)-action will be induced

by the operator Rn and 2π
√
−1L where L = ω∧ is the Lefschetz operator for a Kähler form ω. In particular, each

component grW` H
k(X,Ω●+n

X/∆(logY )∣Y ) is a Hodge structure of weight n+k+` and there are two Hard Lefschetz type

isomorphisms of Hodge structures:

● (2π
√
−1L)k ∶ grW` H

−k(X,Ω●+n
X/∆(logY )∣Y ) → grW` H

k(X,Ω●+n
X/∆(logY )∣Y )(k) for k ≥ 0, ` ∈ Z;

● R`n ∶ grW` H
k(X,Ω●+n

X/∆(logY )∣Y ) → grW−`H
k(X,Ω●+n

X/∆(logY )∣Y )(−`) for ` ≥ 0, k ∈ Z.

Theorem A implies that each Hk(X,Ω●+n
X/∆(logY )∣Y ) still underlies a limiting mixed Hodge structure of weight n+k

whose weight filtration is given by W● = W●(Rn) when the central fiber is non-reduced. We refer to §2.4 for the
definition of polarized bigraded Hodge-Lefschetz structures. Our argument also says that the limiting mixed Hodge
structure can be computed in terms of the cohomology of certain cyclic coverings of intersections of components of
Y via spectral sequences.

Steenbrink proved, loosely speaking, that Ω●+n
X/∆(logY )∣Y is isomorphic to ψf (CX[n + 1]) in the derived cate-

gory of complex vector spaces Db(X,C) where ψf denotes the nearby cycles functor, so that the function p ↦
dimHk(X,Ω●+n

X/∆(logY )∣Xp) is constant on ∆. Thanks to Grauert’s theorem, the sheaf Rkf∗Ω●+n
X/∆(logY ) is locally

free. The log connection onRkf∗Ω●+n
X/∆(logY ) is the higher direct image of an operator ∇ ∈ EndDb(X,C) (Ω●+n

X/∆(logY )),

which fits in a distinguished triangle in Db(X,C)

f∗Ω∆ ⊗Ω●+n−1
X/∆ (logY ) Ω●+n

X (logY ) Ω●+n
X/∆(logY ) f∗Ω∆ ⊗Ω●+n

X/∆(logY )∇

if we trivialize f∗Ω∆. The induced operator [∇] ∶ Ω●+n
X/∆(logY )∣Y → Ω●+n

X/∆(logY )∣Y has a characteristic polynomial

whose roots are in [0,1)∩Q. The action of [∇] on the hypercohomology of Ω●+n
X/∆(logY )∣Y is identical to the residue

operator R of the log connection. So the methods of studying the monodromy filtration of R on the cohomology is
to make the monodromy filtration of [∇] on the complex Ω●+n

X/∆(logY )∣Y explicit. One of the main difficulties that

we encounter is the construction of the rational monodromy filtration on the complex Ω●+n
X/∆(logY )∣Y because the

operator [∇] only lives in the derived category. Steenbrink resolves the relative log de Rham complex using a certain
double complex and then he works out the monodromy filtration directly in the case that Y is reduced. He also
needs to show that the monodromy filtrations are defined over Q, using some complicated topological argument, so
that all the data gives a rational cohomological mixed Hodge complex.

Through the Riemann-Hilbert correspondence [Kas84, Meb84], there should be a regular holonomic D-module
whose de Rham complex is isomorphic to Ω●+n

X/∆(logY )∣Y in Db(X,C) since the nearby cycle functor preserves

perversity [Bĕı87]. On the D-module side, we can derive the monodromy filtration easily by local calculations
on a single D-module which bypasses the derived categories. More importantly, we give a concrete description
of the primitive parts of the associated quotient of the monodromy filtrations. Instead of using Q-structures, we
consider sesuqilinear pairings on D-modules, which play the role of a polarization on a Hodge structure. In fact,
the polarization on the bigraded Hodge-Lefschetz structure in Theorem A will be induced by a sesquilinear pairing.
Although part of the topological data is lost, the sesquilinear pairings that we shall use can be constructed pure
algebraically and only involve symbolic calculations. The local calculation and the sesquilinear pairing justify the
fact that the monodromy filtration of [∇] is the correct choice for the weight filtration. Our method also allows us
to construct naturally the limit when Y is non-reduced.
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As an application, we establish the local invariant theorem, which is a piece in the Clemens-Schmid sequence [Cle77],
when Y is non-reduced. The local invariant cycle theorem first was proved by Deligne in an algebraic setting when
the base is a scheme [Del71, Theorem 4.1.1] and later treated in [Ste76], [Cle77] and [GNA90] for a semistable Kähler
degeneration. It also generalized to mixed Hodge module theory by Saito [Sai88,Sai90].

Theorem B (local invariant cycle theorem). Suppose we are in the same setting as in Theorem A. Then the following
sequence of mixed Hodge structures is exact:

H`(Y,C) H`(X,Ω●+n
X/∆(logY )∣Y ) H`(X,Ω●+n

X/∆(logY )∣Y )(−1).R

In other words, all cohomology classes invariant under the monodromy action comes from the cohomologies of Y .

1.3. Strategy of the construction. Let f ∶ X → ∆ be a proper holomorphic morphism smooth away from the
origin such that the central fiber Y is simple normal crossing but not necessarily reduced. Assume that X is Kähler
of dimension n + 1 and Y = ∑i∈I eiYi where the Yi’s are smooth components and I a finite index set. We adopt the
convention that if F ● denotes a decreasing filtration then F−● = F ● denotes the corresponding increasing filtration
and vice versa.

We first give a different proof of the local freeness of Rkf∗Ω●+n
X/∆(logY ) which only uses the fact that [∇] has

eigenvalues in [0,1) (Theorem 3.2). Then we translate the data of the relative log de Rham complex to the D-module
side (see §4):

Theorem C. There exists a filtered holonomic DX-module (M, F●M) whose de Rham complex DRXM with the
induced filtration F●DRXM is isomorphic to Ω●+n

X/∆(logY )∣Y with the stupid filtration in the derived category of filtered

complex of C-vector spaces. Moreover, there exists an operator R ∶ (M, F●M)→ (M, F●+1M) whose eigenvalues are
in [0,1) ∩Q such that DRXR can be identified with [∇] via the above isomorphism.

Then we investigate the Jordan block of the operator R. Let M≥α (resp. M>α) be the submodule of M spaned
by the generalized eigen-modules ker(R − λ)∞ for λ ≥ α (resp. λ > α). Let Mα = M≥α/M>α. Note that Mα is
canonically isomorphic to ker(R−α)∞ and therefore Rα = R−α acts nilpotently onMα. Using an idea of Saito [Sai90],
we filter Mα by

F`Mα = F`M∩M≥α +M>α

M>α
, for ` ∈ Z.

The filtration F●Mα is different from the naive one F●M∩ ker(R − α)∞. The reason why we do not use the naive
filtration is that F●Mα not only gives the correct weight but is also easy to work out. We prove that any power of the
operator Rα is strict with respect to F●Mα. Namely, for every ` ≥ 0, we have the relation R`αF●Mα = F●+`M∩R`αMα

(Theorem 5.1 for the case Y is reduced and Theorem 7.5 for the general case). This implies that the monodromy
filtration W●Mα and F●Mα interacts very well. Note that the monodromy filtration associated to Rα is the same
as the one of Rn on Mα, the nilpotent part of R in Jordan-Chevalley decomposition. We have the induced good
filtrations

F●WrMα = F●M∩WrMα and F●grWr Mα = F●WrMα/F●Wr−1Mα.

Denote by Pα,` = kerR`+1
α ∩ grW` Mα the `-th primitive for ` ≥ 0, which is isomorphic to

kerR`+1
α

kerR`α + imRα ∩ kerR`+1
α

.

We endow it with the induced good filtration F●Pα,` = im (F●M∩ kerR`+1
α → Pα,`). As a corollary of the strictness

of every power of Rα, the Lefschetz decomposition of grWMα respects the good filtrations, i.e.

F●grWr Mα = ⊕
`≥0,− r2

R`αF●−`Pα,r+2` for r ≥ 0.
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See Theorem 5.6 for the case Y is reduced and Theorem 7.8 for the general case. This corollary suggests that it
suffices to study the hypercohomology of each primitive part. The primitive parts will be the source for the pure
polarized Hodge structures.

We will construct a sesquilinear pairing Sα ∶ Mα⊗CMα → CX using the Mellin transformation [Sab02], whereMα

is the naive conjugation ofMα and CX is the sheaf of currents. BothMα⊗CMα and CX canonically carry DX⊗CDX -
module structures where DX denotes the sheaf of anti-holomorphic differential operators and the sesquilinear pairing

is just a morphism of DX ⊗C DX -modules. A good reference is the MHM project [SS] by Sabbah and Schnell.
The sesquilinear pairings on Mα is an analogy of a polarization on a Hodge structure: a complex polarized Hodge
structure of weight n can be described as a filtered vector space (V,F ●) with a Hermitian pairing S such that
(−1)n−pS is a Hermitian inner product on F p ∩ Gn−p where Gn−p is the S-orthogonal complement of F p+1. The
sesquilinear pairing Sα induces the second filtration on the hypercohomology of DRXMα. For example, if Y is
reduced, the pairing on M is induced by

Ress=0
ε(n + 2)

(2π
√
−1)n+1 ∫∆

∣t∣2s dt
t
∧ dt̄
t̄
∫
Xt

∶ ΩnX/∆(logY ) ⊗C Ωn
X/∆

(logY ) → CX ,

where the constant scalar ε(n + 2)(2π
√
−1)−(n+1) depending on the dimension is used to make the pairing independent

of the choice of orientation. The Mellin transformation is used here to extract the principal part of the asymptotic
expansion of fiberwise integration ∫Xt ∶ ωXt ⊗C ωXt → CXt . We refer to the §2.1 for the definition of sesquilinear
pairings on D-module

The operator Rα is self-adjoint with respect to the pairing Sα ∶ Mα ⊗CMα → CX , i,e, Sα(−,Rα−) = Sα(Rα−,−).
See §6 for the case that Y is reduced §8 for the general case. This implies we have an induced pairing on the
associated graded modules:

Sα,r ∶ grWr Mα ⊗C grW−rMα → CX .

Then PRαSα,r = Sα,r ○ (id ⊗C R
r
α) defines a sesquilinear pairing on the primitive part Pα,r.

Theorem D. The cohomologies of the de Rham complex of Pα,r
⊕
`∈Z

H`(X,DRXPα,r)

together with the filtration induced by F●Pα,r and the sesquilinear pairing induced by PRαSα,r determine a polarized

Hodge-Lefschetz structure of central weight n + r with sl2(C)-action induced by 2π
√
−1L.

A polarized Hodge-Lefschetz structure basically is a direct sum of Hodge structures of different weights preserving
by an sl2(C)-action modeled by the direct sum of all the cohomologies of a compact Kähler manifold. We refer to §2.3
for the definition of polarized Hodge-Lefschetz structures. To illustrate the idea of Theorem D, assume for a moment
that Y is reduced. Then the endomorphismR will be nilpotent and this implies thatM=M0. Denote by Y J = ⋂i∈J Yi
for any non-empty subset J of I. Let τJ ∶ Y J → X be the closed embedding and τ (r+1) ∶ Ỹ (r+1) = ∐#J=r+1 Y

J → X
be the natural morphism for every r ≥ 0. For simplicity, suppose Pr = P0,r. We will show that there exists a filtered
isomorphism (Theorem 5.7)

φr ∶ (Pr, F●Pr) → τ
(r+1)
+ ωỸ (r+1)(−r).

Here, the Tate twist of a filtered D-module is (N , F●N)(−r) = (N , F●+rN). Moreover, the isomorphism respects the
pairing PRSr on Pr (Theorem 6.5):

PRSr(−,−) =
(−1)r
(r + 1)!τ

(r+1)
+ SỸ (r+1)(φr−, φr−),

where SỸ (r+1) is the standard pairing on ωỸ (r+1) . Therefore, the k-th hypercohomology of the de Rham complex

DRXPr is isomorphic to Hn−r+k(Ỹ (r+1),C)(−r) as polarized Hodge structures of weight n + r + k. Summing all the
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hypercohomologies of DRXPr, we get a polarized Hodge-Lefschetz structure of central weight n + r with sl2(C)-
action induced by 2π

√
−1L. For the case when Y is non-reduced, we will identify the primitive part Pα,r with certain

filtered holonomic D-modules coming from the cyclic coverings (Theorem 7.13), and the identification also respects
the sesquilinear pairing (Theorem 8.10). As a direct consequence, we obtain

Theorem E. Let V α`,k =H`(X,grWk DRXMα) be the relabelling of the first page of the weight spectral sequence. Then
V α = ⊕k,`∈Z V

α
`,k is a polarized bigraded Hodge-Lefschetz structure of central weight n with the polarization induced by

Sα and sl2(C) × sl2(C)-action induced by 2π
√
−1L and Rα. Moreover, the differential d1 of the first page of weight

spectral is a differential of polarized bigraded Hodge-Lefschetz structure.

By a formal argument of Guillén and Navarro Aznar [GNA90], which follows some ideas of Deligne and Saito, we
have

Corollary F. We have the following statements:

(1) the Hodge spectral sequence degenerates at FE1;

(2) the weight spectral sequence degenerates at WE2;

(3) the α-generalized eigenspace of the bigraded vector space WE2 = ⊕`,k∈Z grW` H
k(Y,Ω●

X/∆(logY )∣Y ) with respect

to R is a polarized bigradged Hodge-Lefschetz structure of central weight n with polarization induced by Sα
and sl2(C) × sl2(C)-action induced by 2π

√
−1L and Rα.

Note that the third statement in the above Corollary is equivalent to the Theorem A; therefore, we finish the
proof of Theorem A. See Theorem 6.6 and Corollary 6.7, when Y is reduced. See Theorem 8.11 and Corollary 8.12,
when Y is allowed to be non-reduced,.

1.4. Outline. We first review basic notions on holonomic filtered D-modules, integrable logarithmic connections
and polarized bigraded Hodge-Lefschetz structures in §2. Then we set up the relative log de Rham complex and
construct a log connection on its higher direct images in §3. We transfer all of the data on the relative log de Rham
complex into a filtered holonomic D-module in §4. To avoid the messy calculations, we first prove everything in the
reduced case in §5 and §6. The idea for the non-reduced case is almost the same but requires some Hodge theory
of cyclic coverings. We construct some D-modules in §7.4 as the summand of the primitive part and prove their
hypercohomogies underlies canonical polarized Hodge structures in §8.1. Lastly, we prove the local invariant cycle
theorem in §9.

1.5. Acknowledgement. The author thanks his advisor Christian Schnell for introducing this topic to the author,
and also for sharing ideas and discussing details during our weekly meetings. Many ideas of this paper should be
attributed to him. The author also would like to thank Guodu Chen and Nathan Chen for reading a draft of this
paper and useful discussions and Yilong Zhang for pointing out some typos in the earlier versions of the paper.

2. Preliminaries

2.1. Filtered D-modules with sesquilinear pairings. We will work with right D-modules unless further spec-
ified. Let Z be a complex manifold of dimension n and denote by ΩpZ the sheaf of holomorphic p-forms and TZ

the sheaf of holomorphic tangent vectors fields. For a filtered DZ-module we mean a pair (N , F●N) where N is
a coherent DZ-module and F●N is a good filtration. Occasionally we will abuse notations and say N also de-
notes the filtered DZ-module if the filtration is clear. Denote by grFDZ = ⊕`∈Z grF` DX the associated graded
algebra and grFN = ⊕`∈Z grF` N the associated graded module. Note that grFN is a coherent grFDZ-module. Let
T ∗Z = SpecZgrFDX be the algebraic cotangent bundle and T ∗V Z the geometric conormal bundle of a subvariety V
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in Z. The characteristic variety of N is the support of grFN on T ∗Z and is denoted by char(N). The character-
istic cycle of N is the cycle associated to the coherent sheaf grFN on T ∗Z and is denoted by cc(N). Neither the
characteristic variety nor the characteristic cycle depend on the choice of the filtration [HTT08]. For example, the
canonical bundle ωZ is naturally a holonomic DZ-module with action

α.ξ = −d(ξ ⌟ α)
for local sections ξ ∈ TZ and α ∈ ωZ . It also naturally has a good filtration

(2.1) F`ωZ = {
ωZ , ` ≥ −n;

0, ` < −n.
Then one can compute cc(ωZ) = [T ∗ZZ] which is the cycle of the zero section of the cotangent bundle. We call N
a holonomic DZ-module if dim char(N) = n. See more details in [HTT08]. A Tate twist of filtered DZ-module is
defined to be N(−r) = (N , F●+rN) for any r ∈ Z.

Denote by Db(Z,C) the bounded derived category of complexes with values in finite dimensional C-vector spaces
and Db(Z,D) the bounded derived category of DZ-modules. Denote by Db

h(Z,D) the full subcategory of Db(Z,D)
whose objects are complexes with holonomic cohomologies. For a morphism f ∶ Z →W between complex manifolds,
denote by Rf∗,Rf! ∶ Db(Z,C) → Db(W,C) the derived pushforward and proper pushforward functors respectively
and Rkf∗,R

kf! the k-th cohomology functors respectively. For any N ● ∈ Db(Z,D), the pushforward functor and the
proper pushfoward functor f+, f† ∶ Db(Z,D) →Db(W,D) are by definition, respectively

f+N ● = Rf∗(N ●
L
⊗
DZ

DZ→W ) and f†N ● = Rf!(N ●
L
⊗
DZ

DZ→W ),

where DZ→W = f∗DW is the transfer module. In fact, the functor f† preserves the holonomicty, i.e., f† ∶ Db
h(Z,D) →

Db
h(W,D) (see [HTT08]). Of course if f is proper or proper on the support of N then f+ = f†. The de Rham complex

of N is

DRZN =def N ⊗
−●

⋀TZ = {N ⊗
n

⋀TZN →N ⊗
n−1

⋀ TZ → ⋯→ N}
with N is in degree 0. If without further indication, tensor products are always taken over O-modules. Some authors
also call it Spencer complex. The de Rham complex of ωZ

ωZ ⊗
−●

⋀TZ = {ωZ ⊗
n

⋀TZωZ → ωZ ⊗
n−1

⋀ TZ → ⋯→ ωZ}
is isomorphic to the usual de Rham complex DRZOZ = Ωn+●Z of Z under the isomorphisms

(2.2) ωZ ⊗
p

⋀TZ → Ωn−pZ , ω ⊗ ∂J ↦ (−1)n−j1+⋯+n−jpdzJ̄ ,
where ∂J is a local section of ⋀pTZ , J is ordered index set and J̄ is the complement with the natural ordering, and
ω = dz1 ∧ dz2 ∧⋯ ∧ dzn. If F●N is a good filtration, the de Rham complex is also filtered:

F`DRZN = F`+●N ⊗
−●

⋀TZ = {F`N ⊗
n

⋀TZN → F`+1N ⊗
n−1

⋀ TZ → ⋯→ F`+nN}.
The direct image functor and the de Rham functor are commute ∶ Rf! ○DRZ = DRW ○ f† [MS, Corollary 4.4.4].

A sesquilinear pairing S on DZ-module N is a DZ,Z-module morphism S ∶ N ⊗CN → CZ . Here, DZ,Z = DZ ⊗C DZ

for DZ is the sheaf antiholomorphic differential operators, N is the stupid conjugate of N as a DZ-module and CZ is
the sheaf of currents on Z with natural DZ,Z-module structure. We have the proper pushforward functor similarly

as above on DZ,Z-modules and also call it f†:

f†(−) =def Rf!(−
L
⊗

D
Z,Z

DZ,Z→W,W ),
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where the transfer module DZ,Z→W,W =def f
∗DW,W . Because of the natural morphism f†CZ → CW , we can pushfor-

ward the sesquilinear pairing to get

H 0f†Sk ∶ H kf†N ⊗C H −kf†N →H 0f†N ⊗C N → CW .

If f is a closed embedding then f+S ∶ f+N ⊗C f+N → CW . If W is a point, then we have an induced pairing on the
complex

f†S ∶ DRZ,ZN ⊗C N → DRZ,ZCZ ≃ C[2n],
where DRZ,ZN ⊗C N ≃ DRZN ⊗C DRZN . Taking cohomology at 0-th degree yields, for each k ∈ Z,

(2.3) Hk
c (Z,DRZN)⊗H−k

c (Z,DRZN) →H0
c (Z,DRZ,ZN ⊗C N) →H2n

c (Z,C) ≃ C.

Example 2.1. The DZ-module ωZ carries a natural pairing SZ ∶ ωZ ⊗C ωZ → CZ ,

(2.4) ⟨SZ(m′,m′′), η⟩ = ε(n + 1)
(2π

√
−1)n ∫Z

ηm′ ∧m′′,

for m′,m′′ local sections of ωZ , η a test function on Z and ε(k) = (−1)
k(k−1)

2 . The coefficient ε(n+1)

(2π
√
−1)n

in the definition

is chosen so that ε(n+1)

(2π
√
−1)n

m∧m = ∣m∣2 is a positive current for any local section m of ωZ and elimination the choice

of orenation (see more details in §2.3). The pairing SZ ∶ ωZ ⊗C ωZ → CZ yields a collection of pairings

Hk
c (Z,DRZωZ) ⊗CH−k

c (Z,DRZωZ) → C.

2.2. Logarithmic connections. If D = ∑aiDi is a simple normal crossing divisor on Z for ai ≥ 0, denote by
ΩZ(logD) the sheaf of meromorphic differential 1-forms with logarithmic poles along Dred = ∑Di and denote by
ΩpZ(logD) = ⋀pΩZ(logD) the meromophic p-forms with logarithmic pole along D. Each ΩpZ(logD) is a locally free
OZ-module.

In our convention, the de Rham complex of Z is DRZOZ

Ω●+n
Z = {OZ → ΩZ → Ω2

Z → ⋯→ ΩnZ}[n].
The log de Rham complex is

Ω●+n
Z (logD) = {OZ → ΩZ(logD) → Ω2

Z(logD) → ⋯ → ΩnZ(logD)}[n].
We will follow the Koszul sign rule: for a chain complex C● with differential d, the shifted complex C●+n = C●[n]
equipped with differential (−1)nd. We define residue along Di by (see [EV92, 2.5])

ResDi ∶ Ω●+n
Z (logD) → Ω●+dimDi

Di
(log(D −Di)∣Di),

dzi
zi

∧ α ↦ α∣Di ,

where zi is the local defining equation of Di and dzi
zi

∧ α is a local section of Ω●+n
Z (logD). It factors through

Ω●+n
Z (logD)∣Di → Ω●+dimDi

Di
(log(D −Di)∣Di).

By abuse of notations, we still call the above morphism ResDi . Let DJ = ∩j∈JDJ and DJ = ∑j∈J Dj . Then we have
a collection of residue maps, by choosing an order on the indices and successively applying ResDj for j ∈ J ,

ResDJ ∶ Ω●+n
Z (logD) → Ω●+dimDJ

DJ (log(D −DJ)∣DJ ).

A log connection ∇ with poles along D on a coherent OZ-module F is a C-linear morphism ∇ ∶ F → ΩZ(logD)⊗F
satisfying the Leibniz rule ∇fs = df ⊗ s + f∇s for f local section of OZ and s local section of F . One can extend
standardly ∇ to a complex

F ΩZ(logD) ⊗ F ⋯ ΩnZ(logD) ⊗ F .∇ ∇∇ ∇
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If the above is a chain complex, i.e., ∇2 = 0 we say (F ,∇) is an integrable log connection. For any integrable log
connection ∇ ∶ F → ΩZ(logD) ⊗ F , we call the morphism ResDi∇ ∶ F → F∣Di induced by ResDi ∶ ΩZ(logD) → ODi
its residue along Di. Note that ResDi is OZ-linear and factors through again F∣Di → F∣Di .

An integrable log connection is same as a left DZ(logD)-module, where DZ(logD) is the sub-algebra of DZ

generated locally by the differential operators P such that P ⋅ ID ⊂ ID. Here, we denote by ID the ideal sheaf
of the normal crossing divisor D. Then we can extend the definition of residues of a log connection as follows.
The sheaf ODi = OZ/IDi naturally has a left DZ(logD)-module structure because IDi is also stable under by the
DZ(logD)-action by the naive reason. Let F● be a complex of integrable log connections. Then the complex

F●
L
⊗
OZ

ODi

is a complex of DZ(logD)-modules because taking tensor products over OZ is closed in the category of DZ(logD)-
modules and one can resolve either F● or ODi using locally DZ(logD)-free resolutions. The `-th cohomology
H `(F● ⊗L ODi) is indeed ODi-module equipped with an integrable log connection. The residue of of this log
connection is ODi -linear and is called the the `-th residue of the complex F●.

As in the case of D-module, the sheaf ωZ(logD) = ΩnZ(logD) carries a canonical right DZ(logD)-module structure
and we have the left to right transformation F ↦ ωZ(logD) ⊗ F for any left DZ(logD)-module F . Moreover, we
have the following analog

Theorem 2.2. The log de Rham complex of DZ(logD)
{DZ(logD) → ΩZ(logD) ⊗DZ(logD) → ⋯ → ΩnZ(logD) ⊗DZ(logD)} [n]

is a resolution of ωZ(logD) as right DZ(logD)-modules. The Spencer complex of DZ(logD)

DZ(logD) ⊗
n

⋀TZ(logD) → DZ(logD) ⊗
n−1

⋀ TZ(logD) → ⋯ → DZ(logD)
is a resolution of OZ as left DZ(logD)-modules.

For any integrable log connection F , it induces a complex of right DZ-modules,

(2.5) {F ⊗DZ → ΩZ(logD) ⊗ F ⊗DZ → ⋯→ ΩnZ(logD) ⊗ F ⊗DZ}[n].
In fact, it is nothing but the log de Rham complex of F ⊗DZ as a left DZ(logD)-module.

Lemma 2.3. The log de Rham complex of F ⊗DZ is a DZ-module resolution of

ωZ(logD) ⊗ F ⊗
DZ(logD)

DZ .

Proof. By the above theorem, we have

ωZ(logD) ⊗ F ⊗
DZ(logD)

DZ ≃ ωZ(logD) ⊗ F ⊗
DZ(logD)

(DZ(logD) ⊗
−●

⋀TZ(logD)) ⊗DZ

= ωZ(logD) ⊗ F ⊗
−●

⋀TZ(logD) ⊗DZ

≃ Ω●+n
Z (logD) ⊗ F ⊗DZ .

The last isomorphism follows from that the contraction ωZ(logD) ⊗⋀−● TZ(logD) ≃ Ω●+n
Z (logD). �

Example 2.4. We will use the following fact: the complex of right DZ-modules

{DZ → ΩZ(logD) ⊗DZ → ⋯→ ΩnZ(logD) ⊗DZ}[n]
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is a filtered resolution of ωZ(∗D) = ∪k∈ZωZ(kD), equipped the induced filtration by Ωn+●Z (logD)⊗F`+n+●DZ . In fact,
it is well-known that the inclusion Ωn+●Z (logD) → Ωn+●Z (∗D) is a filtered quasi-isomorphism [Del71]. The inclusion
extends to a filtered quasi-isomorphism Ωn+●Z (logD) ⊗ DZ → Ωn+●Z (∗D) ⊗ DZ . Since Ωn+●Z (∗D) ⊗ DZ is a filtered
resolution of ωZ(∗D), we conclude the proof. It follows that, for f ∶ Z →W ,

f†ωZ(∗D) = Rf!(ωZ(∗D) ⊗LDZ DZ→W ) = Rf!Ω
n+●
Z (logD) ⊗DW .

In particular, if f is a closed embedding then f! = f+ is right exact and f† = H 0f†, which means

{DW → f+ΩZ(logD) ⊗DW → ⋯→ f+ΩnZ(logD) ⊗DW }[n]
is a resolution of f†ωZ(∗D). We put the induced filtration to make it a filtered resolution and denote by

f†(ωZ(∗D), F●ωZ(∗D)) = (f†ωZ(∗D), F●f†ωZ(∗D)),
or for simplicity just f†ωZ(∗D).

The DZ-module looks like L⊗DZ for L is a OZ-module is called induced DZ-module. For example, we have seen
ΩdimZ+●
Z ⊗DZ and Ω(logD)dimZ+●

Z ⊗DZ are complexes of induced DZ-modules.

2.3. Polarized Hodge-Lefschetz structures. The goal of this subsection is to introduce polarized bigraded Hodge-
Lefschetz structures. The prototype of polarized Hodge-Lefschetz structures one should keep in mind is the graded
vector space consisting of cohomologies of a compact Kähler manifold. Polarized bigraded Hodge-Lefschetz structures
are the degenerations of polarized Hodge-Lefschetz structures. We begin with the convention on Hodge structures
and we only consider complex Hodge structures.

A Hodge structure of weight n is a finite dimensional vector space V with two decreasing filtrations F ● and G●

satisfying

V = F p ⊕Gn+1−p,

for each p ∈ Z. Let V p.q = F p ∩Gq for p + q = n. Then the above definition is equivalent to

V = ⊕
p+q=n

V p,q.

A morphism of Hodge structures is just a morphism of vector spaces such that it preserves the two filtrations. A
polarization on the Hodge structure (V,F ●,G●) is a non-degenerated hermitian pairing S ∶ V ⊗C V → C such that

(1) F p is orthogonal to Gn+1−p with respect to S for every p ∈ Z;
(2) (−1)qS(−,−) is hermitian inner product on V p,q.

Remark 2.5. A polarized Hodge structure of weight n is completely determined by the triple (V,F●V,S) because

Gn+1−pV = {a ∈ V ∶ S(a, b) = 0 for all b in F pV } = F pV ⊥S .
We will also call the triple (V,F●V,S) a polarized Hodge structure.

Remark 2.6. A Tate twist (V,F ●, S)(r) on a polarized Hodge structure (V,F ●, S) is the triple (V,F ●+r, (−1)rS),
for any integer r.

Now let us move on to the geometric case. It is well-known that the k-th cohomology group of a compact Kähler
manifold Z has Hodge decomposition

Hk(Z,C) = ⊕
p+q=k

Hp,q(Z)

and thus it is a Hodge structure of weight k. Fix a choice of
√
−1. Let Z be a compact Kähler manifold of dimension

n, and let h be any Kähler metric on Z. We denote the Kähler form by ω = −Imh ∈ A2(Z,R) and denote its
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cohomology class by [ω] ∈ H2(Z,R); note that this depends on the choice of
√
−1 through the function Im ∶ C → R.

The choice of
√
−1 endows the two-dimensional real vector space C with an orientation on Z. The induced orientation

on Z has the property that

∫
Z

ωn

n!
= vol(Z) > 0.

The integral also depends on the orientation, hence on the choice of
√
−1. To remove the dependence, instead of the

usual integral, we should use
1

(2π
√
−1)n ∫Z

∶ A2n(Z,C) → C.

Of course we still have
1

(2π
√
−1)n ∫Z

(2π
√
−1ω)n
n!

= vol(Z).

Let L = [w]∧ be the Lefschetz operator for a Kähler class [w]. Then for k ≤ dimZ the primitive part

PLH
k(Z,C) =def kerLdimZ−k ∩Hk(X,C)

is a polarized Hodge structure of weight k with the polarization

S(a, b) = ε(n − k + 1)
(2π

√
−1)n ∫Z

(2π
√
−1L)n−ka ∧ b,

for a, b ∈ PLHk(Z,C) because of the Hodge-Riemman bilinear relation.

If we consider the cohomology groups all together, we will get the Hodge-Lefschetz strcuture of central weight n.
Denote by (X,Y,H) the sl2(C)-triple, i.e.,

[X,Y] = H, [H,X] = 2X, [H,Y] = −2Y.

In the Lie group SL2(C), we have the Weil element w = eXe−YeX with the property that w−1 = −w, and under the
adjoint action of SL2(C) on its Lie algebra, one has the identities

wHw−1 = −H, wXw−1 = −Y, wYw−1 = −X
From this, one deduces that eX = we−XeY = eYweY. Now A●(Z) becomes a representation of sl2(C) if we set

X = 2π
√
−1L and Y = (2π

√
−1)−1Λ

and let H act as multiplication by k − n on the subspace Ak(Z). The reason for this (non-standard) definition is

that it makes the representation not depend on the choice of
√
−1. It is easy to see how w acts on primitive forms.

Suppose that α ∈ An−k(Z) satisfies Yα = 0. Then wα ∈ An+k(Z). If we now expand both sides of the identity

eXα = eYweYα = eYwα
into power series, and then compare terms in degree n + k, we get

wα = Xk

k!
α.

This formula is the reason for using w (instead of the otherwise w−1): there is no sign on the right-hand side.

A Hodge-Lefschetz structure is linear algebra data encoding both representation theoretic and Hodge theoretic
information. Recall that a finite dimensional sl2(C)-representation is a graded vector space V = ⊕`∈Z V` satisfying
the following three equivalent conditions.

(1) each graded piece V` is the `-eigenspace of H;
(2) the morphism X` ∶ V−` → V` is an isomorphism for each ` ≥ 0;
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(3) the morphism Y` ∶ V` → V−` is an isomorphism for each ` ≥ 0.

Example 2.7. For any finite dimensional vector space V together with a nilpotent operator N , there exists a
so-called monodromy filtration W● uniquely determined by the following two conditions

● for each ` ∈ Z, N ∶W` →W`−2;
● the induced operator N ` ∶ grW` → grW−` is an isomorphism for each ` ≥ 0.

Let grW = ⊕`∈Z grW` . The `-th primitive part PNgrW` = kerN `+1 ∩ grW` consists of the classes of generators of cyclic

subspaces of V of dimension ` as C[N]-modules for ` ≥ 0. For each generator v, we have N `+1v = 0 but N `v ≠ 0 and
also v is not a image of N . Therefore, we have the identification

PNgrW` = kerN `+1

kerN ` + imN ∩ kerN `+1
.

Furthermore, we have the Lefschetz decomposition grW` = ⊕k≥0N
kPNV`+2k. Taking N = Y, the Lefschetz structure

and the grading uniquely determines the operator X such that (X,Y,H) is a sl2(C)-triple by the relation XYk =
k(` − k + 1)Yk−1 on PNgrW` . Thus grW naturally is a representation of sl2(C).

By Hard Lefschetz theorem, for any compact Kähler manifold the vector space ⊕`∈ZH
dimZ+`(Z,C) is a represen-

tation of sl2(C) by setting X = 2π
√
−1L the Lefschetz operator, Y = (2π

√
−1)−1Λ the adjoint operator. But because

of the Lefschetz operator of is of type (1,1), we actually have X ∶Hk(Z,C) →Hk+1(Z,C)(1) is a morphism of Hodge
structures and X` ∶ HdimZ−`(Z,C) → HdimZ+`(Z,C)(`) is an isomorphism of Hodge structures. This leads to the
following definition: a Hodge-Lefschetz structure of central weight n is a sl2(C)-representation V = ⊕`∈Z V` with two
filtrations F ●V and G●V such that

(1) each graded piece (V`, F ●V`,G
●V`) is a Hodge structure of weight n + `;

(2) the operator X ∶ (V`, F ●V`,G
●V`) → (V`+2, F

●+1V`+2, ,G
●+1V`+2) is a morphism of Hodge structures such that

X` ∶ (V−`, F ●V−`,G
●V−`) → (V`, F ●V`,G

●V`)(`)
is an isomorphism of Hodge structures;

(3) the operator Y ∶ (V`, F ●V`,G
●V`) → (V`−2, F

●−1V`−2,G
●−1V`−2) is a morphism of Hodge structures such that

Y` ∶ (V`, F ●V`,G
●V`) → (V−`, F ●V−`,G

●V−`)(−`)
is an isomorphism of Hodge structures.

It follows from the definition the primitive part PXV` is a sub-Hodge structure for each ` < 0. Let V` =HdimZ+`(Z,C)
and V = ⊕`∈Z V`. It follows that V is a Hodge-Lefschetz structure of central weight dimZ. Hodge-Lefschetz structure
interplays well with the Hodge-Riemann bilinear relation. A polarization on a Hodge-Lefschetz structure V of central
weight n is a hermitian symmetric paring S ∶ V ⊗C V → C such that

(1) the restriction S∣V`⊗CV−k is zero for ` + k ≠ 0;

(2) S(X−,−) = S(−,X−) and S(−,Y−) = S(Y−,−);
(3) S−`(X`−,−) is a polarization on PXV−`, or equivalently, S` ○ (id ⊗ w) is a polarization on V` where S` ∶

V` ⊗ V−` → C is the restriction of S.

Note that w ∶ Vk → V−k(−k) is automatically an isomorphism of Hodge structures (of weight n+k). We first prove
an auxiliary formula. Suppose that a ∈ V−` is primitive, in the sense that X`+1a = 0( and ` ≥ 0). Then Ya = 0, and
from we−X = eXe−Y, we get we−Xa = eXa, and after expanding and comparing terms in degree ` − 2j, also

(2.6) w
Xj

j!
a = (−1)j X`−j

(` − j)!a



LIMITS OF HODGE STRUCTURES VIA HOLONOMIC D-MODULES 13

since w2 acts on V−`+2j as (−1)−`+2j = (−1)`, this formula is actually symmetric in j and ` − j,.

Lemma 2.8. If V is a Hodge-Lefschetz structure, then w ∶ Vk → V−k(−k) is an isomorphism of Hodge structures.

Proof. Any a ∈ Vk has a unique Lefschetz decomposition

a = ∑
j≥max(k,0)

Xj

j!
aj

where aj ∈ Vk−2j satisfies Y aj = 0. (We only need to consider j ≥ k in the sum because X2j−k+1aj = 0, which implies

that Xjaj = 0 for j < k.) Suppose further that a ∈ V p,qk , where p + q = n + k. Then Xiaj ∈ V p+i,q+ik+2i , and by descending

induction on j ≥ max(k,0), we deduce that aj ∈ V p−j,q−jk−2j . In other words, the Lefschetz decomposition holds in the

category of Hodge structures.

We can now check what happens when we apply w. Using (2.6), we find that

wa = ∑
j≥max(k,0)

w
Xj

j!
aj = ∑

j≥max(k,0)

(−1)j Xj−k

(j − k)!aj ∈ V
p−k,q−k
−k

and so w is a morphism of Hodge structures. The same calculation shows that w−1 is also a morphism of Hodge
structures. It follows that w is an isomorphism of Hodge structures. �

The definition of polarized Hodge-Lefschetz structure of central weight n is redundant. In fact the definition is
equivalent to a tuple (V,X, F ●, S) for V = ⊕`∈Z V`, F

● is a decreasing filtration, X ∶ (V`, F ●) → (V`+2, F
●+1), and S is

a Hermitian pairing such that

(pHL1) for each ` ≥ 0, X` ∶ F ●V−` → F ●+`V` is an isomorphism;
(pHL2) S(X−,−) = S(−,X−) and S∣V`⊗CV−k vanishes except for k = −`;
(pHL3) the triple (PXVj , F●, S ○ (Xj ○ id )) is a porlarized Hodge structure of weight n − j.

The condition (pHL1) in the above definition indicates the Lefschetz decomposition respects the filtration F ●.
Therefore Y is determined uniquely and also filtered. The second condition implies that S(Y−,−) = S(−,Y−). The

third condition says that S○(id ⊗w) is non-degenerate on F pV`⊗F pV−`. Therefore, we also get the following concrete
description of the Hodge structure on V`: for p + q = n + `

V p,q` = {a ∈ F pV` ∶ S`(a, b) = 0 for all b ∈ F p−`+1V−`},
GqV` = {a ∈ V`, S`(a, b) = 0 for all b ∈ Fn−q+1V−`}.

Example 2.9. For a compact Kähler manifold Z of dimension n, let V` = Hn+`(Z,C) and V = ⊕`∈Z V`. Then V

together with X = 2π
√
−1L and Y = (2π

√
−1)−1Λ and with the natural filtration is a Hodge-Lefschetz structure of

central weight n. By Hodge-Riemann bilinear relation, taking

(2.7) S`(a, b) =
ε(n + ` + 1)
(2π

√
−1)n ∫Z

a ∧ b̄ = ε(`)(−1)`n ε(n + 1)
(2π

√
−1)n ∫Z

a ∧ b̄

for a ∈ V` and b ∈ V−` gives a polarization on V . The polarized Hodge-Lefschetz structure V is determined by the
filtered DZ-module ωZ together with the sesquilinear pairing SZ . The graded piece V` is just `-th hypercohomology
of DRZωZ with induced filtration F ●V` given by the image of H`(Z,F−●DRZωZ). And the polarization Sk is given
by ε(k) times the pairing

Hk(Z,DRZωZ) ⊗H−k(Z,DRZωZ) H0(Z,DRZ,ZωZ ⊗C ωZ) H0(Z,DRZ,ZCZ) ≃ CSZ
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We can work out the pairing explicitly. Note that we have a commutative diagram

DRZ,ZωZ ⊗C ωZ DRZ,ZOZ ⊗C OZ

DRZ,ZCZ DRZ,ZDbZ

S D

where the upper horizontal arrow is the isomorphism induced by (2.2) and similarly the lower horizontal arrow is
defined on the terms in degree −k,

CZ ⊗OZ,Z̄

k

⋀TZ,Z̄ → Ω2n−k
Z,Z̄ ⊗OZ,Z̄ DbZ

by the following rule: write a current locally as Dω ∧ ω̄, with a distribution D and denote by ∂J = ⋀J ∂j and
dxJ̄ = ⋀i∉J dxi for an ordered index subset J of I; then

(2.8) (Dω ∧ ω̄) ⊗ ∂J ∧ ∂̄K ↦ (−1)(j1+⋯+jp)+(k1+⋯+kq)(−1)nqdxJ̄ ∧ dxK̄ ⊗D

where #J = p and #K = q, and p + q = k. The sign factor is explained by the number of swaps that are needed to
move everything into the right place, which is (2n − j1) + ⋯ + (2n − jp) + (n − k1) + ⋯ + (n − kq). We can now derive
a formula for the induced pairing

(2.9) DRZOZ ⊗C DRZOZ → DRZ,Z̄DbZ .

For the two local sections α = dxJ̄ and β = dxK̄ , under the isomorphism DRZOZ ≅ DRZωZ in (2.2), the (n− p)-form
α goes to

(−1)np(−1)j1+⋯+jp ⋅ ω ⊗ ∂J .
and the (n − q)-form β goes to

(−1)nq(−1)k1+⋯+kq ⋅ ω ⊗ ∂K .
The pairing SZ on DRZωZ takes those two sections to

(2.10) (−1)n(p+q)(−1)(j1+⋯+jp)+(k1+⋯+kq)S(ω,ω) ⊗ ∂J ∧ ∂̄K

where SZ is defined in (2.4). Now SZ(ω,ω) =DZω ∧ ω̄, where D is the distribution

DZ = ε(n + 1)
(2π

√
−1)n ∫Z

Under the isomorphism in (2.8) the section (2.10) therefore goes to

(−1)npdxJ̄ ∧ dxK̄ ⊗DZ = (−1)n(degα−n)α ∧ β̄ ⊗DZ

The formula we have just derived also works for smooth forms, of course. In other words, the same formula can be
used to extend (2.9) to a pairing on the de Rham complex of smooth forms. The resulting pairings on cohomology
are, assuming Z is compact

(2.11) Hn+k(Z,C) ⊗Hn−k(Z,C) → C, (α,β) ↦ (−1)n(degα−n) ε(n + 1)
(2π

√
−1)n ∫Z

α ∧ β̄,

which coincides with the pairing (2.7) precisely.
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2.4. Polarized bigraded Hodge-Lefschetz structures. In the paper, what we really consider is the degeneration
of “variation of Hodge-Lefschetz structures” of a family of compact Kähler manifolds. As it turns out the limit of
the degeneration is a bigraded Hodge-Lefschetz structure. We begin to define polarized bigraded Hodge-Lefschetz
structures. Similarly to the case of sl2(C)-representation, a sl2(C)× sl2(C)-representation is a bigraded vector space
V = ⊕`,k∈Z V`,k satisfying the following three equivalent conditions:

(1) each bigraded piece V`,k is the `-th eigenspace of H1 and k-th eigenspace of H2;
(2) for each `, k ∈ Z we have X1 ∶ V`,k → V`+2,k and X2 ∶ V`,k → V`,k+2 plus isomorphisms

X`1 ∶ V−`,k → V`,k and Xk2 ∶ V`,−k → V`,k;

(3) for each `, k ∈ Z we have Y1 ∶ V`,k → V`−2,k and Y2 ∶ V`,k → V`,k−2 plus the isomorphism

Y`1 ∶ V`,k → V−`,k and Yk2 ∶ V`,k → V`,−k.

A bigraded Hodge-Lefschetz structure of central weight n is a sl2(C) × sl2(C)-representation V = ⊕`,k∈Z V`,k with
two filtrations F ●V and G●V such that

(1) the bifiltered vector space (V`,k, F ●V`,k,G
●V`,k) is a Hodge structure of weight n + ` + k;

(2) the two operators X1 ∶ (V`,k, F ●,G●) → (V`+2,k, F
●+1,G●+1) and X2 ∶ (V`,k, F ●,G●) → (V`,k+2, F

●+1,G●+1) are
morphisms of Hodge structures such that

X`1 ∶ (V−`,k, F ●,G●) → (V`,k, F ●,G●)(`) and Xk2 ∶ (V`,−k, F ●,G●) → (V`,k, F ●,G●)(k)
are isomorphisms of Hodge structures.

(3) the two operators Y1 ∶ (V`,k, F ●,G●) → (V`−2,k, F
●−1,G●−1) and Y2 ∶ (V`,k, F ●,G●) → (V`,k−2, F

●−1,G●−1) are
morphisms of Hodge structures such that

Y`1 ∶ (V`,k, F ●,G●) → (V−`,k, F ●,G●)(−`) and Yk2 ∶ (V`,k, F ●,G●) → (V`,−k, F ●,G●)(−k)
are isomorphisms of Hodge structures.

A polarization on a bigraded Hodge-Lefschetz structure V = ⊕`,k∈Z V`,k of central weight n is a hermitian symmetric

pairing S ∶ V ⊗C V → C such that

(1) the restriction S∣V`,k⊗CVi,j
∶ V`,k ⊗C Vi,j → C vanishies except for ` = −i and k = −j;

(2) S(X1−,−) = S(−,X1−) and S(−,Y2−) = S(Y2−,−);
(3) S`,k(X`1−, (−Y2)k−) is a polarization on the bi-primitive part P−`,k = kerX`+1

1 ∩kerYk+1
2 ∩V−`,k, or equivalently,

S`,k(−,w1w2−) is a polarization on V`,k, where S`,k is the restriction of S on V`,k ⊗V−`,k and wi = eXie−YieXi
for i = 1,2.

This is the practical definition because in the later application X1 will be the 2π
√
−1L and Y2 will be, up to a

scalar, the logarithmic of the monodromy for the degeneration. Similiarly to the case of Hodge-Lefschetz structure,
we have a simpler definition.

Theorem 2.10. A polarized bigraded Hodge-Lefschetz structure of central weight n on a filtered bigraded vector space
(V = ⊕`,k V`,k, F

●V ) is uniquely determined by the following:

(pbHL1) for every `, k ∈ Z we have two operators X1 ∶ (V`,k, F ●) → (V`+2,k, F
●+1) and Y2 ∶ (V`,kF ●) → (V`,k−2, F

●−1)
such that

X`1 ∶ F ●V−`,k → F ●+`V`,k and Yk2 ∶ F ●V`,k → F ●−kV`,−k are isomorphisms;

(pbHL2) a collection of Hermitian pairings S`,k ∶ V`,k ⊗C V−`,−k → C such that

S`,k(X1−,−) = S`+2,k(−,X1−) and S`,k(−,Y2−) = S`,k−2(Y2−,−);
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(pbHL3) the triple (P−`,k, F ●P−`,k, S ○ (X`1 ⊗ (−Y2)k)) is a polarized Hodge structure of weight n − ` + k where

F ●P−`,k = kerX`1 ∩ kerYk2 ∩ F ●V−`,k is the bi-primtive part.

Then the Hodge structure on Vj,k can be described as: for p + q = n + j + k
V p,qj,k = {a ∈ F pVj,k ∶ Sj,k(a, b) = 0 for all b ∈ F p−j−k+1V−j−k},

GqVj,k = {a ∈ Vj,k ∶ Sj,k(a, b) = 0 for all b ∈ Fn−q+1V−j,−k}.

The proof is simple and is left to the reader. Later when we construct the limiting mixed Hodge structure, the
polarized bigraded Hodge-Lefschetz structure naturally comes up from the first page of weight spectral sequence
associated to a mixed Hodge complex. Modeled on the properties of the differential of spectral sequence we give the
following definition:

A differential of a polarized bigraded Hodge Lefschetz structure (V,F ●,X1,Y2, S) is a linear map d ∶ V → V such
that

(1) d ∶ (Vj,k, F ●) → (Vj+1,k−1, F
●) and d2 = 0;

(2) d is skew-symmetrc with respect to S, i.e., S(d−,−) + S(−, d−) = 0;
(3) [X1, d] = 0 and [Y2, d] = 0.

Remark 2.11. In fact, the above three conditions imply that d is a morphism of Hodge structures d ∶ V p,qj,k →
V p,qj+1,k−1. A vector a ∈ GqVj,k means that S(a, b) = 0 for all b ∈ Fn−q+1V−j,−k. Then S(da, b) = S(a, db) = 0 for all

b ∈ Fn−q+1V−j−1,−k+1, indicating da belongs to GqVj+1,k−1.

The main result of this subsection is the following version of Deligne’s lemma, showed by Guillén and Navarro
Aznar.

Theorem 2.12 ( [GNA90, (4.5)]). The cohomology kerd/imd of a polarized differential bigraded Hodge-Lefschetz
struture is again a polarized bigraded Hodge-Lefschetz structure.

Proof. Let C ∶ V → V be the operator that acts as (−1)q on the subspace V p,qj,k in the Hodge decomposition of each

Vj,k. Since d is a morphism of Hodge structures, we have [d,C] = 0. The fact that S is a polarization means that the
Hermitian pairing

h+ ∶ V ⊗C V → C, h+(a, b) = S (Ca,w1w2b)
is positive-definite on V . Let d∗ be the adjoint of d with respect to h+. Fix a ∈ Vj,k and b ∈ Vj,k,:

h+(da, b) = S (Cda,w1w2b) = S (dCa,w1w2b)
= −S (Ca, dw1w2b) = −S (Ca,w1w2 ⋅w−1

2 w−1
1 dw1w2 ⋅ b) = h+ (a, d∗b) ,

i.e. the adjoint d∗ = −w−1
2 w−1

1 dw1w2.

In addition to the two relations in the definition of differential

[X1, d] = 0 and [Y2, d] = 0

we obtain from the grading another two relations

[H1, d] = d and [H2, d] = −d.
With respect to the sl2(C)×sl2(C)-action on EndC(V ), the element d therefore has weight (+1,−1), and is primitive
with respect to the action by Y1 and X2. Define

d1 = [Y1, d] and d2 = − [X2, d] .
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The reason for the minus sign is that we have [Y2, d] = 0. Then d1 has weight (−1,−1), and is primitive with respect
to the action by X1 and X2; this gives

[H1, d1] = −d1, [X1, d1] = d, [Y1, d1] = 0, w1d1w
−1
1 = d

[H2, d1] = −d1, [Y2, d1] = 0.

Similarly, d2 has weight (+1,+1), and therefore

[H2, d2] = d2, [X2, d2] = 0, [Y2, d2] = −d, w2d2w
−1
2 = d

[H1, d2] = d2, [X1, d2] = 0.

Therefore, d∗ = − [Y1, d2] = [X2, d1] ∈ EndC V . It has weight (−1,+1), and is primitive with respect to X1 and Y2.
From this, and the identities we already have, we deduce the following set of relations:

[H1, d
∗] = −d∗, [X1, d

∗] = d2, [Y1, d
∗] = 0, w1d

∗w−1
1 = −d2

[H2, d
∗] = d∗, [X2, d

∗] = 0, [Y2, d
∗] = −d1, w2d

∗w−1
2 = −d1.

We can check that the (formal) Laplace operator

∆ = dd∗ + d∗d ∈ EndC(V )
is invariant under the action of sl2(C) × sl2(C). For example,

[X1, dd
∗] = X1dd

∗ − dd∗X1 = dX1d
∗ − d (X1d

∗ + d2) = −dd2

[X1, d
∗d] = X1d

∗d − d∗dX1 = (d∗X1 − d2)d − d∗X1d = −d2d

from which we conclude, using d2 = 0, that

[X1,∆] = − (dd2 + d2d) = −(d (dX2 −X2d) + (dX2 −X2d)d) = 0

The other three commutators can be checked similarly. On the other hand, ∆ is also a morphism of Hodge structures:
the reason is that

d ∶ Vj,k → Vj+1,k−1, Y1 ∶ Vj,k → Vj−2,k(−1), X2 ∶ Vj,k → Vj,k+2(1)
are all morphisms of Hodge structures, and ∆ is obtained by composing them in some order. It follows that ker ∆ ⊆ V
is a bigraded Hodge-Lefschetz structure, polarized by the restriction of S. Because of the canonical isomorphism
ker ∆ ≃ kerd/imd as bigraded Hodge-Lefschetz structures, the induced pairing by S on kerd/imd is also a polarization.
This concludes the proof. �

3. Log relative de Rham complex

Let f ∶ X → ∆ be a proper holomorphic morphism smooth away from the origin whose central fiber Y is simple
normal crossing but not necessarily reduced. Assume X is Kähler of dimension n + 1 and Y = ∑i∈I eiYi where Yi’s
are smooth components and I a finite index set. Let t be a parameter on ∆ and z0, z1, z2, ..., zn a local coordinate
system on X such that t = ze00 z

e1
1 ⋯zekk such that e0, e1, ..., ek ≥ 1. Then we have Ω∆(log 0) = O∆ ⋅ dt

t
and ΩX(logY )

is locally generated by

e0
dz0

z0
, e1

dz1

z1
, ..., ek

dzk
zk

, dzk+1, dzk+2, ..., dzn

over OX . Denote by ξ0, ξ1, ..., ξn the image of the above generators in ΩX/∆(logY ), respectively. As a quotient of
ΩX(logY ), the sheaf ΩX/∆(logY ) is generated by ξ0, ξ1, ..., ξn, but under the relation

ξ0 + ξ1 +⋯ + ξn = 0 because f∗
dt

t
= e0

dz0

z0
+ e1

dz1

dz1
+⋯ + ek

dzk
zk

.
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Let TX/∆(logY ) be the dual bundle of ΩX/∆(logY ). It is a subsheaf of TX , generated by

(3.12) Di =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

ei
zi∂i −

1

e0
z0∂0, 1 ≤ i ≤ k

∂i, i > k,
where ∂i is the local section of TX dual to dzi in ΩX . It follows that D1,D2, ...,Dn is the dual frame of ξ1, ξ2, ..., ξn.

3.1. A “log connection”. We shall construct an operator in EndDb(∆,C) (Rf∗Ω●+n
X/∆(logY )) which should be re-

garded a “log connection”. Note that we have the following short exact sequence of OX -modules

0→ f∗Ω∆(log 0) ⊗Ω●+n
X/∆(logY ) → Ω●+n+1

X (logY ) → Ω●+n+1
X/∆ (logY ) → 0.

Under the identification dt
t
∧ ∶ OX → f∗Ω∆(log 0), the above short exact sequence becomes

0 Ω●+n
X/∆(logY ) Ω●+n+1

X (logY ) Ω●+n+1
X/∆ (logY ) 0.

dt
t ∧

Here, the morphism dt
t
∧ ∶ ΩkX/∆(logY ) → Ωk+1

X (logY ) works as [α] ↦ dt
t
∧α which does not depend on the represen-

tative of [α]. Let Cone● = Ω●+n
X (logY ) ⊕ Ω●+n

X/∆(logY ) be the mapping cone of dt
t
∧ ∶ Ω●+n−1

X/∆ (logY ) → Ω●+n
X (logY ).

In our convention, the differential δ of the mapping cone works as δ(α, [β]) = ((−1)ndα + dt
t
∧ β, (−1)nd[β]), where

d is the usual exterior derivative on Ω●
X(logY ) and by abuse of notation, also d denotes the induced differential on

Ω●
X/∆(logY ). Then we have the following diagram:

(3.13)

Cone● Ω●+n
X/∆(logY )

Ω●+n
X/∆(logY )

q

p

p○q−1

where q ∶ Cone● → Ω●+n
X/∆(logY ), (α, [β]) ↦ [α] is a quasi-isomorphism and p is the second projection. Therefore we

have the morphism p ○ q−1 in EndDb(X,C) (Ωn+●X/∆(logY )). For any local section g ∈ O∆, the multiplication by g is an

endomorphism of Ω●+n
X/∆(logY ) because it is f−1O∆-linear.

Lemma 3.1. The operator ∇ = (−1)n−1p ○ q−1 satisfies [∇, g] = tg′ in EndDb(X,C) (Ω●+n
X/∆(logY )), where g′ denotes

the derivative of g ∈ O∆.

Proof. It is equivalent to show that [p ○ q−1, g] = (−1)ntg′. Define g(α, [β]) = (gα, g[β] + (−1)n−1tg′[α]) for any
(α, [β]) ∈ Cone● and g ∈ f−1O∆. We shall show that g is an endomorphism of Cone●, i.e., gδ(α, [β]) = δg(α, [β]).
This follows from that

gδ(α, [β]) = g ((−1)ndα + dt
t
∧ β, (−1)nd[β])

= ((−1)ngdα + g dt
t
∧ β, (−1)ngd[β] − tg′d[α])

and
δg(α, [β]) = δ (gα, g[β] + (−1)n−1tg′[α])

= ((−1)ndgα + dt
t
∧ (gβ + (−1)n−1tg′α), (−1)nd(g[β] + (−1)n−1tg′[α]))

= ((−1)ngdα + g dt
t
∧ β, (−1)ngd[β] − tg′d[α]) .
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It is easy to see that g ○ q = q ○ g so that q−1 ○ g = g ○ q−1. Therefore,

[p ○ q−1, g] = p ○ q−1 ○ g − g ○ p ○ q−1 = [p, g] ○ q−1

But [p, g](α, [β]) = p(gα, g[β] + (−1)n−1tg′[α]) − g[β] = (−1)n−1tg′[α]. It follows that

[p ○ q−1, g] ○ q(α, [β]) = [p, g](α, [β]) = (−1)n−1tg′ ○ q(α, [β]).
By inverse q we prove the statement. �

Because of the identification dt
t
∧ ∶ O∆ → Ω∆(log 0), what we really get is a morphism in Db(X,C)
∇ ∶ Ω●+n

X/∆(logY ) → f∗Ω∆(log 0) ⊗Ω●+n
X/∆(logY )

such that ∇g = g∇ + dt
t
⊗ tg′ ∈ EndDb(X,C)(Ω●+n

X/∆(logY )) for any local section g ∈ O∆. Running the similar con-

struction, we obtain an induced C-linear (in fact f−1O∆-linear) endomorphism [∇] on Ω●+n
X/∆(logY )∣Y in Db(X,C)

satisfying the following diagram.

Ω●+n
X/∆(logY ) Ω●+n

X/∆(logY ) Ω●+n
X/∆(logY )∣Y Ω●+n

X/∆(logY )[1]

Ω●+n
X/∆(logY ) Ω●+n

X/∆(logY ) Ω●+n
X/∆(logY )∣Y Ω●+n

X/∆(logY )[1]

∇+1

t

∇ [∇] (∇+1)[1]

t

Since Ω●+n
X/∆(logY ) is f−1O∆-linear, each cohomolgy Rkf∗Ω●+n

X/∆(logY ) is a coherent O∆-module. Taking direct

image, we get C-linear morphisms between distinguished triangles in Db
coh(∆,O∆):

(3.14)

Rf∗Ω●+n
X/∆(logY ) Rf∗Ω●+n

X/∆(logY ) Rf∗Ω●+n
X/∆(logY )∣Y Rf∗Ω●+n

X/∆(logY )[1]

Rf∗Ω●+n
X/∆(logY ) Rf∗Ω●+n

X/∆(logY ) Rf∗Ω●+n
X/∆(logY )∣Y Ω●+n

X/∆(logY )[1]

Rf∗∇+1

t

Rf∗∇ Rf∗[∇] Rf∗(∇+1)[1]

t

where the morphism
Rf∗∇ ∶ Rf∗Ω●+n

X/∆(logY ) → Rf∗Ω●+n
X/∆(logY )

satisfies [Rf∗∇, g] = tg′ ∈ EndDb(∆,C) (Rf∗Ω●+n
X/∆(logY )) for any local sections g ∈ O∆.

3.2. Residue. In the above situation, one should regard Rf∗[∇] as the residue of Rf∗∇. More generally, let F● be
a complex of O∆-modules with a morphism ∇ ∈ EndDb(∆,C)(F●) such that [∇, g] = tg′ for any g ∈ O∆. Let G● be the

mapping cone of t ∶ F● → F●, which computes to F●⊗LC(0). Then by the axioms of triangulated categories [HTT08],
there exists an operator R ∈ EndDb(∆,C)(G●) making the following diagram commute in Db(∆,C).

F● F● G● = F● ⊗L C(0) F●[1]

F● F● G● = F● ⊗L C(0) F●[1]

∇+1

t

∇ R (∇+1)[1]

t

We call the operator R a residue of ∇. Note that the axioms of triangulated categories cannot guarantee that the
filling is unique. However, the eigenvalues of R` only depends on ∇, where R` denotes the induced operator on the
cohomology H ` (F● ⊗L C(0)). First, every object in Db

coh(∆,O) splits, meaning that F● ≃ ⊕`∈Z H `F●[−`], since

there are no Exti for i ≥ 2 between two coherent sheaves over a curve. It follows that the morphism ∇ breaks up into
sum of morphism consisting of diagonal morphism ∇` ∶ H `F●[−`] → H `F●[−`] which is an actual log connection
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and off-diagonal morphism H `F●[−`] →H mF●[−m] but only for ` >m. Thus the eigenvalues of R` are determined
by ∇` and ∇`+1. When F● is a locally free sheaf centered at degree zero and ∇ is the usual log connection. Then
above definition coincides with the usual definition of the residue of ∇.

Returning to our case, the natural choice of a residue of Rf∗∇ is R = Rf∗[∇] because of the diagram (3.14): by
the projection formula, we have

Rf∗Ω●+n
X/∆(logY )

L
⊗

O∆

C(0) = Rf∗ (Ω●+n
X/∆(logY )

L
⊗

f−1O∆

f−1C(0)) = Rf∗ (Ω●+n
X/∆(logY )∣Y ) .

Our main result concerning the relative log de Rham complex is the following.

Theorem 3.2. The higher direct image R`f∗Ω●+n
X/∆(logY ) is locally free for each ` ∈ Z. Moreover, there exists a

canonical isomorphism for every p ∈ ∆

R`f∗Ω●+n
X/∆(logY ) ⊗C(p) ≃H`(X,Ω●+n

X/∆(logY )∣Xp), where C(p) is the residue filed at p.

We first present two preliminary theorems.

Theorem 3.3. The operator R` has eigenvalues in [0,1) ∩Q for each ` ∈ Z.

Proof. Later in §4 (Theorem 4.19) we will show that in fact [∇] satisfies p([∇]) = 0 for

p(λ) =∏
i∈I

ei−1

∏
j=0

(λ − j

ei
).

Hence so is R`f∗[∇] and this implies the eigenvalues are in [0,1) ∩Q.

Alternatively, by Grothendieck spectral sequence

Ep,q2 = Rpf∗H q(Ω●+n
X/∆(logY )∣Y ) ⇒ Rp+qf∗(Ω●+n

X/∆(logY )∣Y ),
it suffices to show that the induced operator Rpf∗H

q[∇] on Rpf∗H
qΩ●+n

X/∆(logY )∣Y has eigenvalues in [0,1) ∩Q
for each q ∈ Z since Ep,q∞ is a sub-quotient of Ep,q2 . The following is proved by Steenbrink [Ste76, Proposition 1.13]:

Lemma 3.4. The stalk of H qΩ●+n
X/∆(logY )∣Y at a point u is generated by the germs (t ae ξi1 ∧ ξi2 ∧ ⋯ξiq+n)u for all

0 ≤ a < e and all 0 ≤ i1, i2, ..., iq+n ≤ n over the ring C{t 1
e }/tC{t 1

e } where e is the gcd of e0, e1, ..., ek and C{t 1
e } is the

ring of convergent power series with the variable t
1
e .

We will elaborate the proof of the lemma later. Temporarily admitting the lemma, then

H q[∇]u(t
a
e ξi1 ∧ ξi2 ∧⋯ξiq+n)u = (a

e
t
a
e ξi1 ∧ ξi2 ∧⋯ ∧ ξiq+n)u,

meaning that the eigenvalues of H q[∇] are 0, 1
e
, 2
e
, ..., e−1

e
∈ [0,1) ∩ Q in a neighborhood of u. This implies that

there exists an open neighborhood U containing u and a polynomial pU(λ) whose roots are in [0,1) ∩ Q such
that pU (H q[∇]) = 0 over U . By the properness of Y , we can take a finite open covering U = {Ui} of Y such
that p(H q[∇]) = ∏i pUi(H q[∇]) = 0. It follows that p(Rpf∗H q[∇]) = 0, meaning eigenvalues of Rpf∗H

q[∇] in
[0,1) ∩Q. �

Proof of Lemma 3.4. We will actually prove the original statement of [Ste76, Proposition 1.13] that, in the same
notations as in the lemma, the stalk at a point u of H qΩ●+n

X/∆(logY ) is generated by germs

(t ae ξi1 ∧ ξi2 ∧⋯ξiq+n)u
for all a ∈ Z≥0 and all tuples 0 ≤ i1, i2, ..., iq+n ≤ n over C{t 1

e } The lemma is a direct corollary.
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The complex of stalks Ω●+n
X/∆(logY )u can be identified with the Kozul complex of operators D1,D2, ...,Dn on OX,u

putting in degree −n,−n + 1, ...,0. Define GjΩ`X/∆(logY )u to be the submodules of Ω`X/∆(logY )u spanned by the
germs

ξi1 ∧ ξi2 ∧⋯ ∧ ξi` such that #{m ∶ im ≤ k} ≥ j.
Then {G`Ω●

X/∆(logY )u}`∈Z is a decreasing filtration of Ω●
X/∆(logY )u. The associated spectral sequence has Er,●0 =

grrGΩr+●X/∆(logY )u. Notice that grrGΩr+●X/∆(logY )u can be identified with direct sums of Koszul complex of operators

Dk+1,Dk+2, ...,Dn on OX,u, so Er,`1 =Hr+`(grrGΩ●
X/∆(logY )) = 0 for ` ≠ 0 and Er,01 is spanned by germs

ξi1 ∧ ξi2 ∧⋯ ∧ ξi` such that #{im ≤ k} = j
over C{z0, z1, ..., zk}, thanks to the usual Poincaré lemma. Consequently, the spectral sequence degenerates at E2

with Er,02 = H r(Ω●
X/∆(logY ))u. Now E●,0

1 is the Koszul complex of operators D1,D2, ...,Dk on C{z0, z1, ..., zk}.

Because each Di for 0 ≤ i ≤ k is a homogenous differential operator, E2 can be computed monomial by monomial.

For simplicity let ξi1,i2,...,ir = ξi1 ∧ ξi2 ∧⋯ ∧ ξir . Now I claim that a cocycle

v = ∑
i1<i2,...<ir

ci1,i2,...,irz
a0

0 za1

1 ⋯zakk ξi1,i2,..,ir ∈ E
r,0
1

is cohomologous to zero if Aj ∶= aj/ej − a0/e0 ≠ 0 for some 1 ≤ j ≤ k. Note that Dj(za0

0 za1

1 ⋯zakk ) = Ajza0

0 za1

1 ⋯zakk for
every 1 ≤ j ≤ k. Since v is a cocycle, the coefficients satisfy

(3.15)
r

∑
`=1

(−1)`ci1,i2,...,î`,...,ir+1
Ai` = 0.

Assume that not all Aj ’s are zero for 1 ≤ j ≤ k then A = ∑A2
i is non-zereo. Then the number

di1,i2,...,ir−1 =
k

∑
α=1

Aα
A
cα,i1,i2,...,ir−1 .

is well-defined. Here we extend standardly that cσ(i1),σ(i2),..,σ(ir) = sign(σ)ci1,i2,...,ir for any permutation σ. Then
the element

∑
i1<i2<...<ir−1

di1,i2,...,ir−1z
a0

0 za1

1 ⋯zakk ξi1,i2,...,ir−1

in Er−1,0
1 has coboundary

k

∑
α=1

∑
i1<...<ir−1

Aαdi1,i2,...,ir−1z
a0

0 za1

1 ⋯zakk ξα,i1,i2,...,ir−1

= ∑
i1<...<ir

r

∑
`=1

(−1)`Ai`di1,i2,...,î`,...,irz
a0

0 za1

1 ⋯zakk ξi1,i2,...,ir

= ∑
i1<...<ir

k

∑
α=1

r

∑
`=1

(−1)`Ai`Aα
A

cα,i1,i2,...,î`,...,irz
a0

0 za1

1 ⋯zakk ξi1,i2,...,ir

applying (3.15) = ∑
i1<...<ir

k

∑
α=1

A2
α

A
c,i1,i2,...,irz

a0

0 za1

1 ⋯zakk ξi1,i2,...,ir = v.

We conclude the claim. Therefore, Er,02 is generated over C by za0

0 za1

1 ⋯zakk ξi1,i2,..,ir with

Di(za0

0 za1

1 ⋯zakk ) = 0.

That is, za0

0 za1

1 ⋯zakk = ta/e for some a. Hence, we conclude the lemma. �
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Theorem 3.5. Let F● be a complex of O∆-modules with coherent cohomologies, equipped with a log connection, i.e
an operator

∇ ∈ EndDb(∆,C) (F●) such that [∇, g] = tg′

for ant local holomorphic function g where g′ is the derivative of g. Assume that the residue R` of ∇ defined in
the beginning of this subsection acting on each cohomology H ` (F● ⊗L C(0)) has eigenvalues in [0,1). Then every

H `(F●) is locally free.

Proof. By the definition of residue, we have the morphism of distinguished triangles

F● F● F● ⊗L C(0) F●[1]

F● F● F● ⊗L C(0) F●[1]

∇+1

t

∇ R (∇+1)[1]

t

in Db(∆,C). Taking cohomologies gives

(3.16)

⋯ H `−1 (F● ⊗L C(0)) H ` (F●) H `(F●) H ` (F● ⊗L C(0)) ⋯

⋯ H `−1 (F● ⊗L C(0)) H `(F●) H `(F●) H ` (F● ⊗L C(0)) ⋯

R`

t

∇+1 ∇ R`+1

t

For simplicity, fix ` and let H = H `(F●) and denote by ker t the kernel of the morphism t ∶ H →H . It suffices to
prove that ker t is trivial on H . We are going to show that ker t is a subset of tkH for all k ≥ 0 and thus, by Krull’s
theorem ker t is zero.

It follows from the diagram (3.16) that ∇+1 on ker t and ∇ on H /tH have eigenvalues in [0,1). Therefore, there
exists a polynomial b1(s) ∈ C[s] with roots in [0,1) such that

b1(∇)H ⊂ tH ,

and another a polynomial b2(s) ∈ C[s] with eigenvalues in [0,1) such that

b2(∇ + 1)ker t = 0.

Suppoe v is an element in ker t ∩ tkH for some k ≥ 0. It follows that v = tkv1 for some v1 ∈ H . Because the roots of
b1(s − k) are bigger then the roots of b2(s + 1), the two polynomials b1(s − k) and b2(s + 1) are relative prime. We
deduce that there exist p(s), q(s) ∈ C[s] such that

1 = p(s)b1(s − k) + q(s)b2(s + 1).
Therefore, combining the fact that b2(∇ + 1)v vanishes,

v = p(∇)b1(∇ − k)v + q(∇)b2(∇ + 1)v = p(∇)b1(∇ − k)tkv1.

Because of the identity (∇ − k)tk = tk∇, the above is equivalent to

v = tkp(∇ + k)b1(∇)v1.

Because b1(∇)v1 = tv2 for some v2 ∈ H , substituting in the last equality yields

v = tkp(∇ + k)b1(∇)v1 = tkp(∇ + k)b1(∇)tv2 = tk+1p(∇ + k + 1)b1(∇ + 1)v2 ∈ tk+1H .

We proved that v is also an element in tk+1H . By induction and Krull’s theorem we conclude the proof. �

Now we can immediately finish



LIMITS OF HODGE STRUCTURES VIA HOLONOMIC D-MODULES 23

Proof of Theorem 3.2. The complex Rf∗Ω●+n
X/∆(logY ) with Rf∗∇ satisfies the condition of Theorem 3.5. Therefore,

each cohomology R`f∗Ω●+n
X/∆(logY ) is locally free. The second statement in the theorem follows from the the locally

freeness of R`f∗Ω●+n
X/∆(logY ) plus the Grauert’s base change theorem. �

4. Transfer to D−modules

Lemma 3.4 implies the restriction of the relative log de Rham complex on Y is semi-perverse. Indeed, it is even
perverse, showed in [Ste76, §2]. Therefore, there should be a regular holonomic D-module whose de Rham complex is
the restriction of the relative log de Rham complex on Y , in the view of Riemann-Hilbert correspondence established
by Kashiwara [Kas84] and Mebkhout [Meb84]. The stupid filtration should also translates to a coherent filtration
from Hodge theoretic point of view. Then the endomorphism [∇] in the derived category can be captured by an
endomorphism of a D-module. This enable us to study the relation between the filtration and [∇] much easier and
cleaner. In this section, we will construct the filtered D-module and the endomorphism.

4.1. Construction of filtered holonomic DX-modules. Since TX/∆(log) is a subsheaf of TX , the multiplication

by sections in TX/∆(logY ) induces a morphism DX → ΩX/∆(logY ) ⊗ DX , with P ↦ ∑ki=1 ξi ⊗DiP locally. The
morphism extends to a filtered complex of DX -modules

(4.17) Ωn+●X/∆(logY ) ⊗DX = {DX → ΩX/∆(logY ) ⊗DX → ⋯→ ΩnX/∆(logY ) ⊗DX}[n]

with filtration F` (Ωn+●X/∆(logY ) ⊗DX) given by

Ωn+●X/∆(logY ) ⊗ F`+n+●DX = {F`DX → ΩX/∆(logY ) ⊗ F`+1DX → ⋯→ ΩnX/∆(logY ) ⊗ F`+nDX}[n].

Let M̃ be the 0-th cohomology of Ωn+●X/∆(logY ) ⊗DX and F`M be the OX -submodule induced by the the filtration

F` (Ωn+●X/∆(logY ) ⊗DX).

Theorem 4.1. The complex Ωn+●X/∆(logY ) ⊗DX is a filtered resolution of a filtered DX-module (M̃, F●M̃).

Proof. Notice that grF (Ωn+●X/∆(logY ) ⊗DX) = Ωn+●X/∆(logY ) ⊗ grFDX , can be identified locally with the Koszul

complex associated to the regular sequence D1,D2, ...,Dn over the ring grFDX . It follows that Ωn+●X/∆(logY ) ⊗
grFDX is acyclic. Therefore, each graded peace grF` (Ωn+●X/∆(logY ) ⊗DX) is acyclic. We deduce inductively that

F` (Ωn+●X/∆(logY ) ⊗DX) is also acyclic; this can be seen from the long exact sequence associated to the short exact
sequence

0→ F`−1 (Ωn+●X/∆(logY ) ⊗DX) → F` (Ωn+●X/∆(logY ) ⊗DX) → grF` (Ωn+●X/∆(logY ) ⊗DX) → 0.

Taking direct limit, we conclude that Ωn+●X/∆(logY ) ⊗DX is a resolution of M̃. The long exact sequence also implies

the 0-th cohomology of F` (Ωn+●X/∆(logY ) ⊗DX) is isomorphic to F`M̃. This completes the proof. �

Remark 4.2. Note that Ωn+●X/∆(logY )⊗DX is a complex of (f−1O∆,DX)-bimodules because Ωn+●X/∆(logY ) is f−1O∆-

linear. It follows that M̃ is also a (f−1O∆,DX)-bimodule. Note we have two different actions of t on M̃ due to the

bimodule structure. We usually use the left multiplication by t. One can think of M̃ as a flat family assembling the
D-module iXp+ωXp of the smooth fibers Xp for p ∈ ∆ and a specializationM= M̃/tM̃ because using the left f−1O∆

structure, we have filtered isomorphisms

C(p) ⊗ M̃ ≃ C(p) ⊗Ωn+●X/∆(logY ) ⊗DX ≃ Ωn+●X/∆(logY )∣Xp ⊗DX ≃ iXp∗Ωn+●Xp ⊗DX ≃ iXp+ωXp ,
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where iXp ∶Xp →X is the closed embedding of the smooth fiber Xp.

Remark 4.3. The theorem also says by choosing the local trivialization ξ1∧ξ2∧⋯∧ξn of ΩnX/∆(logY ), M̃ can be iden-

tified locally with DX/(D1,D2, ...,Dn)DX and grFM̃ can be identified locally with grFDX/(D1,D2, ...,Dn)grFDX .

Remark 4.4. Let DX/∆(logY ) be the subalgebra of DX generated by TX/∆(logY ). One can show that M̃ is
nothing but

ωX/∆(logY ) ⊗
DX/∆(logY )

DX .

And the filtration F●M̃ is induced from F●ωX/∆(logY ), where F`ωX/∆(logY ) is ωX/∆(logY ) for ` ≥ −n and is zero
otherwise. To keep the proof elementary, we avoid talking about DX/∆(logY )-modules.

Theorem 4.5. The complex Ωn+●X/∆(logY )∣Y ⊗DX is a filtered resolution of a filtered holonimic DX-module (M, F●M).

Proof. Because of the bimodule structure, we have Ωn+●X/∆(logY )∣Y ⊗DX is the cokernel of the left multiplication by

t on Ωn+●X/∆(logY )⊗DX . Therefore, the first part of the statement is equivalent to t ∶ M̃ → M̃ is injective. It suffices

to prove that t ∶ grFM̃ → grFM̃ is injective because the multiplication by t is a filtered morphism. But this follows
from t,D1,D2, ...,Dn is a regular sequence over the ring grFDX . It also follows that grFM is isomorphic locally to
grFDX/(t,D1,D2, ...,Dn)grFDX . This means the characteristic variety of M is cut out by t,D1,D2, ...,Dn ∈ OT ∗X
and thus, the characteristic variety is of dimension n + 1. This proves the holonomicity of M. �

Remark 4.6. Similarly to the case of M̃, the DX -module M is just

ωX/∆(logY )∣Y ⊗
DX/∆(logY )

DX

with the filtration F●M induced by (F●ωX/∆(logY )) ∣Y .

4.2. Properties of M. We first calculate the characteristic cycle of M which is important for later when we
identifying the primitive part of grWM. Then we prove that the de Rham complex ofM with the induced filtration
recover Ω●+n

X/∆(logY )∣Y with the stupid filtration. Lastly, we translate the operator [∇] ∈ EndDb(X,C)(Ω●+n
X/∆(logY ))∣Y

to an operator R on M

Theorem 4.7. The characteristic cycle of M is

cc(M) = ∑
J⊂I

∑
j∈J

ej [T ∗Y JX] ,

where [T ∗Y JX] is the cycle of the conormal bundle of Y J in T ∗X and ei is the multiplicity of Y along each component
Yi for i ∈ I.

Proof. The statement is local and we identify M with DX/(t,D1,D2, ...,Dn). We first describe the characteristic
variety ofM. The support of grFM as a sheaf on T ∗X is defined by the radical of the ideal (t,D1,D2, ...,Dn)grFDX .
In fact, zi∂i for 0 ≤ i ≤ k is in the radical because

(zi∂i)e0+e1+⋯+ek ≡ (z0∂0)e0(z1∂1)e1⋯(zk∂k)ek ≡ t∂e00 ∂e11 ⋯∂ekk ≡ 0 mod (t,D1,D2, ...,Dn)grFDX .

Therefore, char(M) is cut out by tred, z0∂0, z1∂1, ..., zk∂k, ∂k+1, ..., ∂n, where tred = z0z1⋯zk. It follows that char(M) =
⋃J⊂I T ∗Y JX.

Denote by p(Z) the prime ideal defining a integral subvariety Z. Let mJ be the length of grFMp(T ∗
Y J

X) as

an Artinian grFDX,p-module . Then cc(M) = ∑J∈ImJ [T ∗Y JX]. For simplicity let us assume J = {0,1,2, .., µ}
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and by abuse of notation we also the prime ideal p = p(T ∗Y JX) of the variety T ∗Y JX is locally generated by

z0, z1, ..., zµ, ∂µ+1, ∂µ+2, ..., ∂n over grFDX in some local coordinate system. Notice that

grFDX,p/(t,D1,D2, ...,Dn)grFDX,p = grFDX,p/(D′
0,D

′
1, ...,D

′
n)grFDX,p

where

(4.18) D′
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z
e0+e1+⋯+eµ
0 , for i = 0

1

ei
zi −

1

e0
z0
∂0

∂i
, for 1 ≤ i ≤ µ

1

ei
∂i −

1

e0
z0
∂0

zi
, for µ + 1 ≤ i ≤ k

∂i, for i > k,

because ∂0, ∂1, ..., ∂µ, zµ+1, zµ+2, ..., zk are invertible in grFDX,p. Therefore, grFMp can be identifies with

C{z0}/(ze0+e1+⋯+eµ0 ).
Then mJ = dimCC{z0}/(ze0+e1+⋯+eµ0 ) = ∑j∈J ej . This completes the computation. �

Remark 4.8. The above theorem verifies that cc(M) = limp→0 cc(ip+ωXp) = limp→0 [T ∗XpX] as cycles in algebraic

cotangent space T ∗X for p ∈ ∆∗ where ip ∶Xp →X the closed embedding of the smooth fiber. In fact, one can show

that C(p) ⊗ grFM̃, using the left f−1O∆-module structure, is isomorphic to grF ip+ωXp as in Remark 4.2. Refer
to [Gin86] for general results about the characteristic cycles of specializations of holonomic D-modules.

Corollary 4.9. The de Rham complex DRXM together with filtration F●DRXM is isomorphic to Ωn+●X/∆(logY )∣Y
with the stupid filtration in the derived category of filtered complexes of sheaves of C-vector spaces.

Proof. We have showed that F` (Ωn+●X/∆(logY ) ⊗DX) is a resolution of F`M. Therefore, the total complex of

F`+∗ (Ωn+●X/∆(logY ) ⊗DX) ⊗ ⋀−∗ TX is quasi-isomorphic to F`+∗M⊗ ⋀−∗ TX , which is exactly F`DRXM. It re-

mains to show the total complex also quasi-isomorphic to F`Ω
n+●
X/∆(logY ). This follows from that

F`+∗ (Ωn+●X/∆(logY ) ⊗DX) ⊗
−∗

⋀TX = Ωn+●X/∆(logY ) ⊗ F`+n+● (DX ⊗
−∗

⋀TX)

≃ Ωn+●X/∆(logY ) ⊗ F`+n+●OX
= F`Ωn+●X/∆(logY ).

Here, F`OX = OX for ` ≥ 0 and otherwise it is zero. �

Theorem 4.10. The endomorphism ∇ ∈ EndDb(X,C)Ω
n+●
X/∆(logY ) in Lemma 3.1 transfers to a filtered morphism

∇ ∶ (M̃, F●M̃) → (M̃, F●+1M̃), [[α] ⊗ P ] ↦ (dt
t
∧)−1 {d(α⊗ P )}

where α ∈ ΩnX(logY ) and P ∈ DX so that [α] ⊗ P ∈ ΩnX/∆(logY ) ⊗DX . Moreover, restriction on Y yields a filtered

morphism

R ∶ (M, F●M)→ (M, F●+1M)
such that

(4.19) ∏
i∈I

ei−1

∏
j=0

(R − j

ei
) = 0.
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Proof. The morphism dt
t
∧ ∶ Ωn+●X/∆(logY ) → Ωn+1+●

X (logY ) extends to the corresponding complexes of induced DX -

modules
dt

t
∧ ∶ Ωn+●X/∆(logY ) ⊗DX → Ωn+1+●

X (logY ) ⊗DX .

Let Cone● ⊗ DX be the mapping cone of the above morphism. We get a diagram of complexes of DX -modules
similarly to (3.13) and taking 0-th cohomology we get the following.

(4.20)

H 0 (Cone● ⊗DX) M̃

M̃

q

p

p○q−1

where abuse of notation, still denote by p and q the induced morphisms from diagram (3.13). Now q is an isomorphism
of DX -modules. Let [α⊗ P, [β] ⊗Q] be a class in H 0(Cone● ⊗DX) for any α⊗ P ∈ ΩnX(logY ) ⊗DX and [β] ⊗Q ∈
ΩnX/∆(logY ) ⊗DX . Then

δ (α⊗ P, [β] ⊗Q) = ((−1)nd(α⊗ P ) + dt
t
∧ β ⊗Q, (−1)nd([β] ⊗Q)) = 0.

Here, the sign factor (−1)n shows up due to we follow the Koszul sign rule. Because dt
t
∧ ∶ ΩnX/∆(logY ) → Ωn+1

X (logY )
is an isomorphism, we have

[β] ⊗Q = (−1)n−1(dt
t
∧)−1{d(α⊗ P )}.

Therefore, q−1 ∶ M̃ →H 0(Cone● ⊗DX) is given by [[α] ⊗ P ] ↦ [α⊗ P, (−1)n(dt
t
∧)−1{d(α⊗ P )}]. Then we have

∇ = (−1)n−1p ○ q−1 ∶ [[α] ⊗ P ] ↦ (dt
t
∧)−1{d(α⊗ P )}.

Restricting to Y we have the induced operator R on M. If α = ξ1 ∧ ξ2 ∧⋯ ∧ ξn then

R[ξ1 ∧ ξ2 ∧⋯ ∧ ξn ⊗ P ] = (dt
t
∧)−1 (d(e1

dz1

z1
∧ e2

dz2

z2
∧⋯ ∧ dzn ⊗ P))

= (dt
t
∧)−1 (e0

dz0

z0
∧ e1

dz1

z1
∧ e2

dz2

z2
∧⋯ ∧ dzn ⊗

1

e0
z0∂0P)

= [ξ1 ∧ ξ2 ∧⋯ ∧ ξn ⊗
1

e0
z0∂0P ] .

We see that RF●M ⊂ F●+1M. The reason for ∇F●M̃ ⊂ F●+1M̃ is similar. To prove the last statement, we work
locally and identify M with DX/(t,D1, ...,Dn) via the local trivialization ξ1 ∧ ξ2 ∧⋯ ∧ ξn of ΩnX/∆(logY ). Then for

P ∈ DX , R[P ] = [ 1
e0
z0∂0P ]. In fact, because of the relation D1,D2, ...,Dn, the left multiplication by 1

e0
z0∂0 onM is

the same as the multiplication by 1
ei
zi∂i for 1 ≤ i ≤ k. It follows from the identity

(z∂)(z∂ − 1)⋯(z∂ − `) = z`+1∂`+1

for any ` ≥ 0 that

∏
i∈I

ei−1

∏
j=0

(R − j

ei
)[P ] = ∏

i∈I

ei−1

∏
j=0

( 1

ei
zi∂i −

j

ei
)[P ] = ∏

i∈I

1

eeii
zeii ∂

ei
i [P ] = t∏

i∈I

1

eeii
∂eii [P ]

= 0 ∈ DX/(D1,D2, ...,Dn, t)DX .

This completes the proof. �
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Remark 4.11. Note that ∇ ∶ M̃ → M̃ is also can be identified with the left multiplication by 1
ei
zi∂i for i ≤ k, by

choosing the trivialization of ΩnX/∆(logY ), because of the relations Di = 1
ei
zi∂i − 1

e0
z0∂0 for 1 ≤ i ≤ k. This means

for any function g ∈ f−1O∆, we have [∇, g] = tg′ where t and g are local sections of f−1O∆ acting on the left of

M̃. This makes M̃ a (f−1D∆(log 0),DX)-bimodule. Using Godement resolution, the direct image Rf∗DRXM̃ is a
complex of left D∆(log 0)-modules. Similarly, as we already saw in the proof, locally the morphism R ∶ M →M can
be identified with left multiplication by 1

ei
zi∂i for 0 ≤ i ≤ k, meaning [R,g] = tg′ = 0 for g local sections of f−1O∆

acting left on M.

Remark 4.12. The DX -module M is even regular holonomic. Even though it is irrelevant for our purpose, we
can also check M is regular using the definition. Recall that a holonomic right DZ-module N is called regular if
there exists a good filtration F●N such that for any σ ∈ grFDZ vanishing on the charateristic variety of N one has
grFNσ = 0. In the case of M, define locally

G`M= ∑
r,k≥0

RkF`+rMtrred

where tred = z0z1⋯zk. This is a finite sum because M is supported on t = 0 and R has a characteristic polynomial.
It follows that G● is a good filtration forM. I claim that G●M gives the filtration in the definition of the regularity.
Since the characteristic variety of M is locally cut out by tred, z0∂0, ..., zk∂k, ∂k+1, ..., ∂n (see Theorem 4.7) it suffices
to check that G`Mtred ⊂ G`−1M, G`Mzi∂i ⊂ G`M for 0 ≤ i ≤ k and G`M∂i ⊂ G`M for k + 1 ≤ i ≤ n. It is clear
that G`Mtred ⊂ G`−1M. Due to locally grFM = grFDX/(t,D1,D2, ...,Dn)grFM, it follows that grFMDi = 0 for
1 ≤ i ≤ n. In particular, grFM∂i = 0 for k + 1 ≤ i ≤ n, i.e. F`M∂i ⊂ F`M for k + 1 ≤ i ≤ n. Therefore, for k + 1 ≤ i ≤ n,
because [tred, ∂i] = 0,

G`M∂i = ∑
r,k≥0

RkF`+rMtrred∂i ⊂ ∑
r,k≥0

RkF`+rMtrred = G`M.

Since [trred, zi∂i] = (zi∂i − r) trred, and [zi∂i, F`DX] ⊂ F`DX , we have

RkF`+rMtrredzi∂i = RkF`+rM(zi∂i − r) trred ⊂ Rk (zi∂iF`+rM+ F`+rM) trred.

But locally R has the same effect as the left multiplication by one of 1
ei
zi∂i for 0 ≤ i ≤ k. Hence,

Rk (zi∂iF`+rM+ F`+rM) trred = Rk+1F`+rMtrred +RkF`+rMtrred.

It follows that G`Mzi∂i ⊂ G`M for 0 ≤ i ≤ k.

In fact, later we will see that M is an extensions of regular holonomic DX -modules which will again prove that
M is regular (see Theorem 5.7 for the reduced case and Theorem 7.13 for the general case).

5. Reduced case: Strictness and the weight filtration

We begin to study the weight filtration W●M induced R on M. For simplicity to state the results and illustrate
the ideas, we assume Y is reduced in §5 and §6. The general case will be treated in §7 and §8. Since Y is reduced, the
multiplicity ei of irreducible component Yi is 1 and R is nilpotent. Recall that the weight filtration of the nilpotent
operator R is uniquely characterized by the following two properties:

● for each ` ∈ Z, R ∶W`M→W`−2M;
● the induced operator R` ∶ grW` M→ grW−`M is an isomorphism for each ` ≥ 0.
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5.1. Strictness of R. Let F●WrM = F●M∩WrM be the induced filtration for every integer r. In fact, the good
filtration and the weight filtration interact nicely because of the following theorem.

Theorem 5.1. The power of R is strict on (M, F●M), i.e., RaFbM= Fa+bRaM.

Proof. The strictness is a local property; therefore, we can assume M = DX/(t,D1,D2, ...,Dn)DX and R is left
multiplication by z0∂0 on it, recalling that Di = zi∂i − z0∂0 for 1 ≤ i ≤ k and Di = ∂i for k + 1 ≤ i ≤ n. It is clear that
RaFbM is contained in Fa+bR

aM. It suffices to show that for every RaP ∈ Fa+bM, we can find an element Q ∈ FbM
such that RaP = RaQ. Assume P ∈ F`M. If ` ≤ b then there is nothing to prove. Thus, we consider the situation
that ` > b. Then the class of RaP vanishes in grFa+`M. In fact, we have the following lemma:

Lemma 5.2. Denote by [R] the induced operator on grFM. Then ker[R]r+1 is locally generated by the classes of
all degree k − r monomials dividing t = z0z1⋯zk.

We can easily check that monomials of degree k − r dividing t is in ker[R]r+1. Indeed, it is already true that
monomials of degree k − r dividing t is in kerRr+1. Without loss of generality, we only need to check this for the
monomial zr+1zr+2⋯zk:

Rr+1zr+1zr+2⋯zk = z0∂0z1∂1⋯zr∂rzr+1zr+2⋯zk = t∂0⋯∂k = 0 ∈ M.

We will prove the opposite direction after finishing the proof of the theorem. Going back to the proof of the theorem,
by the above lemma,

P = ∑
J⊂I,

#J=k−a+1

zJQJ +Q`−1

where zJ = ∏j∈J zj , QJ ∈ F`M and Q`−1 ∈ F`−1M. But Ra kills the monomials zJ of degree k − a + 1 dividing t. It
follows that RaP = RaQ`−1. Iterating the procedure, we eventually find an element Q ∈ FbM such that RaP = RaQ
with Q ∈ FbM. �

Proof of Lemma 5.2. Note that we are over the commutative ring grFDX . We proceed by induction on r. Let
P ∈ grFDX be a representative of an element in ker[R]r+1. When r = 0, we have

z0∂0P = tQ0 +
n

∑
i=1

DiQi.

Then tQ0 ∈ (∂0, ∂1, ..., ∂n)grFDX . Notice that t, ∂0, ∂1, ..., ∂n is a regular sequence over grFDX . We have Q0 =
∑ni=0 ∂iQ

′
i. This implies

z0∂0P =
k

∑
i=0

t

zi
zi∂iQ

′
i +

n

∑
j=k+1

t∂jQ
′
j +

n

∑
i=1

DiQi

=
k

∑
i=0

t

zi
z0∂0Q

′
i +

k

∑
i=1

Di(Qi +
t

zi
Q′
i) +

n

∑
j=k+1

Dj(Qj + tQ′
j),

from which we conclude that z0∂0(P − ∑ki=0
t
zi
Q′
i) ∈ (D1,D2, ...,Dn)grFDX . Because z0∂0,D1,D2, ...,Dn is again a

regular sequence, we see that P −∑ki=0
t
zi
Q′
i ∈ (D1,D2, ...,Dn)grFDX . This concludes the base case for the induction.

Assume the statement is true for the cases when the exponent is less then r + 1. Let zJ = ∏j∈J zj . Now for

[P ] ∈ ker[R]r+1, we have [R][P ] is in ker[R]r. By induction,

(5.21) z0∂0P = ∑
#J=k−r+1,

J⊂I

zJQJ +
n

∑
i=1

DiQi.
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Fix an index subset J of I such that #J = k − r + 1. Then zJQJ is in the submodule generated by zi for i ∈ I ∖ J
and ∂j for j ∈ J and k < j ≤ n over grFDX . Since zi for i ∈ I ∖ J , ∂j for j ∈ J and k < j ≤ n and zJ form a regular
sequence, we have

QJ = ∑
i∈I∖J

ziQ
′
i + ∑

j∈J

∂jQ
′
j + ∑

k<`≤n

∂`Q
′
`.

Therefore, it follows that

zJQJ = ∑
i∈I∖J

zJziQ
′
i + ∑

j∈J

(zJ
zj
z0∂0Q

′
j +Dj

zJ
zj
Q′
j) + ∑

k<`≤n

D`zJQ
′
`.

Then substuiting in (5.21), we deduce that

z0∂0

⎛
⎝
P − ∑

j∈J

zJ
zj
Q′
j

⎞
⎠
− ∑
i∈I∖J

zJziQ
′
i

is in the submodule generated by degree k − r + 1 monomials dividing t except zJ , and D1,D2, ...,Dn over grFDX .
It follows that we can reduce the monomials of degree k − r + 1 dividing t in the right-hand side equation (5.21) one
by one and at the last step, we get z0∂0 (P − P ′) −Q′, where P ′ is a linear combination of degree k − r monomials
dividing t and Q′ is a linear combination of k−r+2 monomials dividing t, is in the submodule generated by D1, ...,Dn

over grFDX . But ker[R]r−1 is generated by classes represented by degree k− r+2 monomials dividing t by induction
hypothesis. It says that the class of P −P ′ is in ker[R]r and by induction it is generated by degree k−r+1 monomials
dividing t. Therefore, P is a linear combination of degree k − r monomials dividing t. This completes the proof. �

Corollary 5.3. The kerRr+1 is also generated by degree k − r monomials dividing t if one identifies M locally with
DX/(t,D1,D2, ...,Dn)DX .

Proof. It suffices to show that grF kerRr+1 is generated by degree k−r monomials dividing t. Notice that grF kerRr+1

is contained in ker[R]r+1, since [R]r+1 vanishes on grF kerRr+1. In fact, we have grF kerRr+1 = ker[R]r+1 because
degree k − r monomials dividing t are also in grF kerRr+1. �

5.2. The weight filtration. The results concerning the weight filtration and Lefschetz decomposition are formal
and we will work on the abstract setting.

Theorem 5.4. Let N ∶ (G, F●) → (G, F●+1) be a nilpotent operator on a filtered D-module (G, F●). Asume that
every power of N satisfies strictness, i.e., NaFbG = Fa+bN

aG for a ≥ 0 and b ∈ Z. Then the induced operator
Nr ∶ F`grWr G → F`+rgrW−rG is an isomorphism for r ≥ 0, where W● is the weight filtration induced by N .

Proof. It suffices to prove that for any b ∈ F`+rW−rG, we could find a′ ∈ F`WrG such that a = Nra′. Because
W−rG ⊂ NrG, let Nra = b for some a. Then by strictness, there exists a′ ∈ F`G such that Nra′ = Nra ∈ W−rG. It
follows that a′ ∈ WrG. Indeed, if a′ ∈ Wr+kG for some k > 0 such that a′ ≠ 0 ∈ grWr+kG. Then Nr+ka′ = 0 ∈ grW−r−kG
because Nra′ = 0 ∈ grW−r+kG, from which we conclude that a′ ∈ F`Wr+k−1G. Thus, iterating the procedure, a′ is
actually in F`WrG. We conclude the proof. �

Let Pr =def ker (Nr+1 ∶ grWr G → grW−r−2G) be the primitive part of grWG, which can be identified with

kerNr+1

kerNr +N kerNr+2
.

See Example 2.7. Recall the Lefschetz decomposition:

grWr G = ⊕
`≥0,− r2

N `Pr+2` for any r ∈ Z.
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There are two possible ways to define the filtration on Pr: first we have the natural filtration F`Pr induced from the
inclusion Pr → grWr G and second we can also define the filtration using

F` kerNr+1 + kerNr +N kerNr+2

kerNr +N kerNr+2
.

But indeed, the two different methods result in the same filtration because of the strictness. Let m ∈ F`Wr +Wr−1

such that Nr+1m ∈W−r−3 so that represents a class in F`Pr. It suffices to find an element in F` kerNr+1 representing
the same class as m in F`Pr. Let m =m1 +m2 for m1 ∈ F`Wr and m2 ∈Wr−1. It follows that Nr+1m1 ∈ F`+r+1W−r−3

because both Nr+1m,Nr+1m2 ∈ W−r−3 and m1 ∈ F`Wr. Since Nr+3 ∶ F`−2Wr+3 → F`+r+1W−r−3 is surjective, there
exists x ∈ F`−2Wr+3 such that Nr+3x = Nr+1m1 ∈ F`+r+1W−r−3. See the proof of the above theorem. It follows that
m1 −N2x ∈ F` kerNr+1 represents the same element as m in F`Pr ⊂ F`grWr .

Corollary 5.5. The Lefschetz decomposition of grWG respects filtrations, i.e.

F●grWr G = ⊕
`≥0,− r2

N `F●−`Pr+2` for any r ∈ Z.

Returning to our situation, it follows that:

Theorem 5.6. The induced operator Rr ∶ F`grWr M → F`+rgrW−rM is an isomorphism. Therefore, the Lefschetz
decomposition of grWM respects filtrations, i.e.

F●grWr M= ⊕
`≥0,− r2

R`F●−`Pr+2` for any r ∈ Z.

5.3. Identifying the primitive part Pr. Recall that Y J = ∩j∈JYj for a subset J of the index set I and Ỹ (r+1) is

the disjoint union of Y J such that the cardinality of J is r + 1. The morphism τ (r+1) ∶ Ỹ (r+1) → X is the natural
morphism induced by the closed embeddings τJ ∶ Y J →X.

Theorem 5.7. There exists a canonical filtered isomorphism φr ∶ (Pr, F●Pr) → τ
(r+1)
+ ωỸ (r+1)(−r).

Proof. Denote by DJ the normal crossing divisor Y J ∩ YI∖J on Y J . The residue morphism

ResỸ (r+1) ∶ Ω●+n+1
X (logY )∣Y → ⊕

#J=r+1

Ω●+n−r
Y J (logDJ)

extends to a morphism of complexes of filtered induced DX -modules

ResỸ (r+1) ∶ Ω●+n+1
X (logY )∣Y ⊗DX → ⊕

#J=r+1

Ω●+n−r
Y J (logDJ) ⊗DX .

Denote by Hk the k-th cohomology H k (Ω●+n+1
X (logY )∣Y ⊗DX). Taking 0-th cohomology of the above yields, by

Example 2.4

ResỸ (r+1) ∶ H0 → ⊕
#J=r+1

τJ+ ωY J (∗DJ)(−r).

Since the morphism dt
t
∧ ∶ Ω●+n

X/∆(logY ) → Ω●+n+1
X (logY ) also extends to the complexes of induced DX -modules, we

have a short exact sequence of DX -modules

0 Ω●+n
X/∆(logY )∣Y ⊗DX Ω●+n+1

X (logY )∣Y ⊗DX Ω●+n+1
X/∆ (logY )∣Y ⊗DX 0.

dt
t ∧
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Considering the associated long exact sequence

(5.22)

0 H−1 M

M H0 0

R
dt
t ∧

we have the morphism dt
t
∧ ∶ M →H0 and it vanishes on the image of R. To motivate the proof, let me do some local

calculation. Let ζ = dz1
z1

∧ dz2
z2

∧⋯∧ dzk
zk

∧⋯∧dzn represent a local frame of ΩnX/∆(logY )∣Y . Then a local section ofM
is represented by ζ⊗P for P a local section DX . Then ResỸ (r+1)

dt
t
∧ζ⊗P is a section of ⊕#J=r+1 Ωn−rY J (logDJ)⊗DX .

Post-composing with the projection

⊕
#J=r+1

Ωn−rY J (logDJ) ⊗DX → ⊕
#J=r+1

τJ+ ωY J (∗DJ)(−r),

we make the morphism explicit:

ResỸ (r+1) ○
dt

t
∧ ∶ M → ⊕

#J=r+1

τJ+ ωY J (∗DJ)(−r), [ζ ⊗ P ] ↦ [ResỸ (r+1)
dt

t
∧ ζ ⊗ P ].

Let ζ ⊗ zJP represent a class in kerRr+1 for some fixed ordered index subset J with #J = r+1, where zJ = ∏j∈I∖J zj
(Corollary 5.3). Its image under the above morphism only contained in the component τJ+ ωY J (∗DJ)(−r) because
zJ vanishes on other components. Thus, the image is the class represented by

(5.23) ResỸ r+1

dz0

z0
∧ dz1

z1
∧⋯dzk

zk
∧⋯ ∧ dzn ⊗ zJP = ±

dzJ
zJ

∧ dzk+1 ∧⋯dzn ⊗ zJP ∈ Ωn−rY J (logDJ) ⊗DX ,

where
dz
J

z
J
= ⋀j∈I∖J dzj

zj
and the sign depends on the order of J . In fact, from the calculation we see that the image

does not have any pole along DJ , so it is contained in the subsheaf consisting of classes represented by Ωn−rY J ⊗DX .

This means that the class of (5.23) in τJ+ ωY J (∗DJ)(−r) is also contained in the image of the inclusion

τJ+ ωY J (−r) → τJ+ ωY J (∗DJ)(−r), [dzJ ∧ dzk+1 ∧⋯dzn ⊗ P ] ↦ [
dzJ
zJ

∧ dzk+1 ∧⋯dzn ⊗ zJP ].

See Example 2.4. It follows that we obtain a factorization ρr ∶ kerRr+1 → τ
(r+1)
+ ωY (r+1)(−r). In conclusion, we have

the following commutative diagram.

kerRr+1 τ
(r+1)
+ ωY (r+1)(−r)

M H0 ⊕#J=r+1 τ
J
+ ωY J (∗DJ)(−r)

ρr

dt
t ∧ Res

For a local section ζ ⊗ zKP where zK = ∏i∈K zi a monomial of degree k − r + 1, representing a class in kerRr, its
image under ρr is indeed zero because zK annihilates all Ωn−rY J (logDJ) for index subset J such that #J = r + 1. This

implies the morphism ρr kills kerRr. The morphism ρr also kills RkerRr+2, because by (5.22) dt
t
∧ vanishes on the

image of R. Thus it factors through

φr ∶ Pr =
kerRr+1

kerRr +RkerRr+2
→ τ

(r+1)
+ ωY (r+1)(−r).
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The morphism φr is filtered surjective because for dzJ̄ ∧ dzk+1 ∧ ⋯ ∧ dzn ⊗ P ∈ Ωn−rY J ⊗ F`DX representing a class in

F`τ
J
+ ωY J (−r) with #J = r + 1, we can find a lifting class represented by ζ ⊗ zJP in F` kerRr+1. It follows that

cc(Pr) ≥ cc(τ (r+1)
+ ωY (r+1)) = ∑

#J=r+1

[T ∗Y JX] .

Summing up the inequalities gives

∑
r≥0

(r + 1)cc(Pr) ≥ ∑
r≥0

(r + 1) ∑
#J=r+1

[T ∗Y JX] = ∑
J⊂I

(#J) [T ∗Y JX] .

On the other hand, by the Lefschetz decomposition and Theorem 4.7, we have

∑
J⊂I

(#J) [T ∗Y JX] = cc(M) = cc(grWM) = ∑
r≥0

(r + 1)cc(Pr).

Therefore, all inequalities must be equalities, i.e. cc(Pr) = cc(τ (r+1)
+ ωỸ (r+1)). It follows that φr is a filtered isomor-

phism [HTT08, Proposition 3.1.2]. �

6. Reduced case: Sesquilinear pairing on M and limiting mixed Hodge structure

6.1. Sesquilinear pairing. We begin to construct the last data we need for the limiting mixed Hodge structure –
Sesquilinear pairing. In the sense thatM is the specialization of iXt+ωXt for t ≠ 0, the sesquilinear S ∶ M⊗CM→ CX
should also be the specialization of iXt+SXt , where SXt is defined in §2. Presumably one would expect that the pairing

⟨S([ζ1 ⊗ P1] , [ζ2 ⊗ P2]), η⟩ = lim
t→0

⟨iXt+SXt(ζ1 ⊗ P1, ζ2 ⊗ P2), η⟩

= lim
t→0

ε(n + 1)
(2π

√
−1)n ∫Xt

P1P2η ∧ ζ1 ∧ ζ2

should work onM for ζi⊗Pi, i = 1,2 sections of ΩnX/∆⊗DX over local chart U representing classes ofM, and η is a

test function over U . But one could check that the integral ∫Xt P1P2 (η) ζ1∧ζ2 could have order (− log ∣t∣2)k near the
origin where k + 1 is the number of components that intersect in U , so the limit may not exist. To avoid the issue,
we use a Mellin transform device (see [Sab02, 4.E]): locally

⟨S([ζ1 ⊗ P1] , [ζ2 ⊗ P2]), η⟩ =def Ress=0
ε(n + 2)

(2π
√
−1)n+1 ∫X ∣t∣2sP1P2η

dt

t
∧ ζ1 ∧

dt

t
∧ ζ2

= Ress=0
ε(2)

2π
√
−1
∫

∆
∣t∣2s dt

t
∧ dt
t

( ε(n + 1)
(2π

√
−1)n ∫Xt

P1P2η ∧ ζ1 ∧ ζ2)

= Ress=0
ε(2)

2π
√
−1
∫

∆
∣t∣2s dt

t
∧ dt
t
⟨iXt+SXt(ζ1 ⊗ P1, ζ2 ⊗ P2), η⟩.

The last expression in the definition in some extent explains that S is the specialization of iXt+SXt and the 0-current

Ress=0
ε(2)

2π
√
−1 ∫∆ ∣t∣2s dt

t
∧ dt

t
is doing the job of renormalization of iXt+SXt for t ≠ 0. In fact, for any test function g

on ∆, we have

Ress=0
ε(2)

2π
√
−1
∫

∆
∣t∣2s dt

t
∧ dt
t
g = g(0).

We have not check that S is well-defined, but let us do an example to see how the Mellin transform works.
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Example 6.1. Suppose Y is smooth, then R is identical zero and M ≃ iY +ωY , by Theorem 5.7. Thus, the
pairing S should recover the natural pairing SY . In local coordinates t = z0 and for any local sections ζi ⊗ Pi =
dz1 ∧ dz2 ∧⋯ ∧ dzn ⊗ Pi of ΩnX/∆(logY ) ⊗DX , i = 1,2 over local chart U ,

⟨S([ζ1 ⊗ P1] , [ζ2 ⊗ P2]), η⟩ = Ress=0
ε(n + 2)

(2π
√
−1)n+1 ∫X ∣t∣2sP1P2(η)

dt

t
∧ ζ1 ∧

dt

t
∧ ζ2

= Ress=0 ∫
X

∣t∣2s−2P1P2(η)
n

⋀
i=0

√
−1

2π
dzi ∧ dzi

integration by parts on t and t̄ = Ress=0 ∫
X

∣t∣2s
s2

∂0∂0 (P1P2(η))
n

⋀
i=0

√
−1

2π
dzi ∧ dzi.

Because the Laurent expansion of s−2∣t∣2s is ∑∞
`=0 (log ∣t∣2)` s`−2, the above continuously equals to, by Poincaré-Lelong

equation [GH14, Page 388]

∫
X

log ∣t∣2∂0∂0 (P1P2(η))
n

⋀
i=0

√
−1

2π
dzi ∧ dzi = ∫

Y
P1P2(η)

n

⋀
i=1

√
−1

2π
dzi ∧ dzi

= ε(n + 1)
(2π

√
1)n ∫Y

P1P2(η)ζ1 ∧ ζ2

= ⟨iY +SY ([ζ1 ⊗ P1], [ζ2 ⊗ P2]), η⟩.

We can take a cleaner point of view. In the case Y is smooth, the form P1P2(η)ζ1∧ζ2 is smooth in the neighborhood
of Y . It follows that iXt+SXt extends smoothly to t = 0 and the limit of iXt+SXt is exactly iY +SY .

When Y has several smooth irreducible components, the idea of computation is similar to the above. Now we begin
to establish the statements needed to ensure S is well-defined. For any test function η over an arbitrary open subset

U of X and two sections m1,m2 in H0 (U,ΩnX/∆(logY ) ⊗DX), the (2n + 2)-form dt
t
∧m1 ∧ dt

t
∧m2(η) is smooth

away from Y but with poles along Y supported in U . Locally, say mi = ζ⊗Pi for ζ = dz1
z1

∧ dz2
z2

∧⋯dzk
zk

∧dzk+1∧⋯∧dzn
and i = 1,2, the (2n + 2)-form dt

t
∧m1 ∧ dt

t
∧m2(η) is just P1P2(η)dtt ∧ ζ ∧

dt
t
∧ ζ. Let F (s) = F (s,m1,m2, η) be the

meromorphic continuation via integration by parts of the following function

ε(n + 2)
(2π

√
−1)n+1 ∫X ∣t∣2s dt

t
∧m1 ∧

dt

t
∧m2(η).

The function F (s) is holomorphic when Re s > 0 and has potential poles at non-positive integers. Note that F (s) is
independent of local coordinates. We are only interested in the polar part of the function F (s) at s = 0.

Theorem 6.2. The polar part of F (s) at s = 0 only depends on the classes of m1 and m2 in M.

Proof. Let {ρλ} be a partition of unity of the open covering {Uλ} by local charts. Then

F (s) = ∑
λ

ε(n + 2)
(2π

√
−1)n+1 ∫Uλ

∣t∣2s dt
t
∧m1 ∧

dt

t
∧m2(ρλη).

Since ρλη is a test function over Uλ, without loss of generality, we can assume U itself is a local chart. It follows that
we can assume that mi = ζ ⊗Pi for i = 1,2 and ζ = dz1

z1
∧ dz2

z2
∧⋯dzk

zk
∧ dzk+1 ∧⋯∧ dzn. We begin with some properties

of F (s).
Lemma 6.3. Under the assumption that mi = ζ⊗Pi for ζ = dz1

z1
∧ dz2
z2
∧⋯∧ dzk

zk
∧⋯∧dzn and for i = 1,2, the followings

are valid.
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(1) the order of the pole of F (s) at s = 0 is at most k + 1;
(2) if Pi = tP ′

i for one of i = 1,2, then F (s) is holomorphic at s = 0;
(3) for 0 ≤ j ≤ k we have,

F (s, ζ1 ⊗ P1, ζ2 ⊗ zj∂jP2, η) = F (s, ζ1 ⊗ zj∂jP1, ζ2 ⊗ P2, η) = −sF (s, ζ1 ⊗ P1, ζ2 ⊗ P2, η).

Proof of the lemma. The Laurent expansion of F (s) at s = 0 is

F (s) = ∫
X

∣zI ∣2s−2P1P2(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi), where zI =∏

i∈I

zi

= ∫
X

∣zI ∣2s
s2k+2

∂I∂IP1P2(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi), where ∂I =

k

∏
i=0

∂i

=
∞

∑
`=0

s`−(2k+2)

`!
∫
X

(log ∣zI ∣2)
`
∂I∂IP1P2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi).

The order of the pole at s = 0 is at most k + 1: if ` < k + 1, the form

(log ∣zI ∣2)
`
∂I∂IP1P2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

is actually exact because one of ai’s must be 0 in the expansion of (log ∣zI ∣2)
`

into a linear combination of∏k
i=0 (log ∣zi∣2)

ai

with ∑ki=0 ai = ` < k + 1. This proves (1).
Suppose that P1 = tP ′

1. Then the function

F (s) = ∫
X

∣zI ∣2s−2tP ′
1P2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi).

is well-defined at s = 0 because the form

1

zI
P ′

1P2(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

is integrable. The same argument works for the case when P2 = tP ′
2. This proves (2).

Now we turn to the last statement

F (s, ζ ⊗ P1, ζ ⊗ zj∂jP2, η)

= ε(n + 2)
(2π

√
−1)n+1 ∫X ∣t∣2szj∂j(P1P2η)

dz0

z0
∧ dz1

z1
∧⋯ ∧ dzn ∧

dz0

z0
∧ dz1

z1
∧⋯ ∧ dzn

=∫
X

∣zI∖{j}∣2s−2zs−1
j zsj∂jP1P2η

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

integration by part on dzj = − s∫
X

∣zI ∣2s−2P1P2η
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

= − sF (s, ζ ⊗ P1, ζ ⊗ P2, η).
The same argument works for F (s, ζ ⊗ zj∂jP1, ζ ⊗ P2, η) = −sF (s, ζ ⊗ P1, ζ ⊗ P2, η). This proves (3). �

Returning to the proof of the theorem, if one of ζ ⊗Pi is dz1
z1

∧ dz2
dz2

∧⋯dzk
zk

∧dzk+1 ∧⋯∧dzn⊗ tP ′
i , the above lemma

(2) says F (s) is holomorphic. If one of ζ ⊗Pi is dz1
z1

∧ dz2
dz2

∧⋯dzk
zk

∧ dzk+1 ∧⋯∧ dzn ⊗DiP , then the (3) above lemma

says F (s) is in fact 0. �



LIMITS OF HODGE STRUCTURES VIA HOLONOMIC D-MODULES 35

For any sections α,β ∈ M, let {ρλ} be a partition of unity of the open covering {Uλ} by local charts such that

α,β lifts to α̃λ, β̃λ over Uλ in ΩnX/∆(logY ) ⊗DX . The above theorem just says that the pairing S ∶ M⊗CM→ CX
given by

⟨S(α,β), η⟩ =def Ress=0∑
λ

F (s, α̃λ, β̃λ, ρλη)

is well-defined and does not depend on the choice of partition of unity. By the above lemma we also have the
following.

Corollary 6.4. The operator R is self-adjoint with respect to S, i.e. S ○ (R⊗C id ) = S ○ (id ⊗C R).

Because the self-adjointness, we have induced pairings on the graded quotient Sr ∶ grWr M⊗C grW−rM → CX for
every integer r. Denote by PRSr the pairing

Sr ○ (id ⊗C R
r) ∶ Pr ⊗C Pr → CX .

Theorem 6.5. The isomorphism φr ∶ (Pr, F●Pr) → τ
(r+1)
+ ωỸ (r+1)(−r) in Theorem 5.7 respects the sesquilinear

pairings up to a constant (−1)r(r + 1)!−1, i.e.

PRSr(α,β) =
(−1)r
(r + 1)!τ

(r+1)
+ SỸ (r+1)(φrα,φrβ)

for any local sections α,β ∈ Pr.

Proof. Because the problem is local, it suffices to prove the theorem for α and β are represented by

dz1

z1
∧ dz2

z2
∧⋯dzk

zk
∧ dzk+1 ∧⋯ ∧ dzn ⊗ zKi

and #Ki = k − r for i = 1,2 over a local chart U respectively. Recall that zK = ∏j∈K zj . Let η be a test function over
U . We have

⟨PRSr(α,β), η⟩ = ⟨S(α,Rrβ), η⟩ = Ress=0(−s)r ∫
X

∣zI ∣2s−2zK1zK2(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi).

If α ≠ β, the above is in fact zero. Indeed, for v ∈K2 ∖K1, by choosing Rr = ∏i∈I∖K1∖{v} zi∂i,

⟨PRSr(α,β), η⟩ = ⟨S(Rrα,β), η⟩ = Ress=0 ∫
X

∣zI ∣2s−2 t

zv
zv η̃

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi),

where η̃ = ∂I∖(K1∖{v})zK2(zv)
−1
η is a smooth test function. The function

∫
X

∣zI ∣2s−2 t

zv
zv η̃

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

is holomorphic at s = 0 because

1

zI

zv
zv
η̃
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

is integrable.

Therefore, we reduce the proof to the case when α = β represented by

dz1

z1
∧ dz2

z2
∧⋯ ∧ dzk

zk
∧⋯ ∧ dzn ⊗ zK .
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We shall prove that

PRSr(α,α) =
(−1)r
(r + 1)!τ

K
+ SY K (φrα,φrα),

where K is the complement of K in I. Without loss of generality, we can assume K = {r + 1, r + 2, ..., k}. Then

PRSr(α,α) = Ress=0(−s)r ∫
X

∣zK ∣2s−2
k

∏
j=r+1

∣zj ∣2sη
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

= (−1)rRess=0s
−(r+2) ∫

X

k

∏
i=0

∣zi∣2s∂K̄∂K̄(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi), where ∂K̄ =

r

∏
i=0

∂i

= (−1)r
(r + 1)! ∫X (log

k

∏
i=0

∣zi∣2)
r+1

∂K̄∂K̄(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

(⋆) = (−1)r
(r + 1)! ∫X

r

∏
i=0

log ∣zi∣2∂K̄∂K̄(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

= (−1)r
(r + 1)! ∫Y K η

n

⋀
i=r+1

(
√
−1

2π
dzi ∧ dzi) (Poincaré-Lelong equation [GH14, Page 388])

= (−1)r
(r + 1)!τ

K
+ SY K (Res

Y K
dt

t
∧ α,Res

Y K
dt

t
∧ α).

The equality (⋆) holds because if we expand (log∏k
i=0 ∣zi∣2)

r+1
as a linear combination of ∏k

i=0 (log ∣zi∣2)
ai

with

∑ki=0 ai = r + 1, the only possible non-exact form among

k

∏
i=0

(log ∣zi∣2)
ai
∂K̄∂K̄(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi),

is (∏r
i=0 log ∣zi∣2)∂K̄∂K̄(η)⋀ni=0(

√
−1

2π
dzi ∧ dzi). Note that while Res

Y K
depends on the order of the index sets K and

I, the pairing
(−1)r
(r + 1)!τ

(r+1)
+ SỸ (r+1)(φrα,φrβ) =

(−1)r
(r + 1)!τ

K
+ SY K (Res

Y K
dt

t
∧ α,Res

Y K
dt

t
∧ α)

does not because the sign will cancel out. We complete the proof. �

6.2. Constructure of the limiting mixed Hodge structure. We are going to show that the triple (DRXM, F,W )
gives a mixed Hodge complex. Unlike the Q-mixed Hodge complex considered by Deligne [Del71], where the rational
structure is a required input, we do not have this piece of information in our situation. We will redo the Deligne’s
argument on mixed Hodge complex by sesquilinear pairings. It also worths to point out that the sesqiuilinear pairing
makes one check the first page weight spectral sequence of DRXM is a polarzed bigraded Hodge-Lefschetz struc-
ture easier than the case in [GNA90], where they need to decompose the differential d1 on the first page into a
combinatorial differential and a sum of Gysin morphisms.

We first set up the pairing on each page of the weight spectral sequence abstractly. Let N be a holonomic DZ-
module equipped with a sesquilinear pairing S ∶ N ⊗CN → CZ on a complex manifold Z. Assume that N has compact
support. Let N be a nilpotent operator on N such that S ○ (id ⊗CN) = S ○ (N ⊗C id ). Let W●N be the monodromy
filtration associated to N on N . Denote by Ei,jr be the weight spectral sequence convergent to grW−iH

i+j(Z,DRZN)
with Ei,j1 =Hi+j(Z,grW−iDRZN). By abuse of notation, denote by Sk the induced pairing

Hk(Z,DRZN)⊗CHk(Z,DRZN) →H0(Z,DRZ,ZN ⊗C N) →H0
c (Z,DRZ,ZCZ) ≃ C
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multiplying a sign factor ε(k). Let a be a local section of (DRZN)−j−1
and b be a local section of (DRZN)i. Then

D(a⊗C b) = da⊗C b + (−1)−j−1a⊗C db

for D a differential on DRZ,ZN ⊗C N . Applying S, we find that

(6.24) DS(a, b) = S(da, b) + (−1)−j−1S(a, db).
Since the differential d is compatible with the weight filtration, we have an induced pairing E1(S)k on the first page

Ei,j1 of the weight spectral sequence by the pairing

Hk(Z,grW−iDRZN)⊗CHk(Z,grWi DRZN) →H0(Z,DRZ,ZgrW−iN ⊗C grWi N) →H0(Z,DRZ,ZCZ)

multiplying a sign factor ε(k). Then by equation (6.24) we obtain

0 = ε(−j)E1(S)−j(d1a, b) + ε(−j − 1)(−1)−j−1E1(S)−j−1(a, d1b),

since DSa⊗C b is cohmologous to zero. Working out the sign, the above is equivalent to

E1(S)−j(d1a, b) +E1(S)−j−1(a, d1b) = 0,

i.e. the differential d1 is skew-symmetrc with respect to E1(S). It follows that we have an induced pairing on the

second page: E2(S)k ∶ Ei,k−i2 ⊗ E−i,−k+i
2 → C since E2 = kerd1/Imd1. Again, it follows from the equation (6.24),

the differential d2 is skew-symmetric with respect to E2(S). By an inductive argument, we get the induced pairing

Er(S) ∶ Er ⊗Er → C on the r-th page of the weight spectral sequence Er ⊗Er → C such that dr is skew-symmetric
with respect to Er(S) for every r ≥ 1.

Next, let L = [ω]∧ be a Lefschetz operator for a Kähler class [ω] ∈ H1(Z,ΩZ) ∩ H2(Z,R) on Z which can

be thought as a morphism L ∶ C → C[2] in Db(Z,C) and so is X = 2π
√
−1L. Therefore, we obtain a morphism

X ∶ DRZN → DRZN[2]. Let us work out the relation between the sesquilinear pairing Sk and the operator X. By
funtorailty, we have the following commutative diagram in Db(Z,C).

DRZ,ZN ⊗C N DRZ,ZCZ DRZ,ZDbZ A●Z ⊗DbZ [2 dimZ]

DRZ,ZN ⊗C N [2] DRZ,ZCZ [2] DRZ,ZDbZ [2] A●Z ⊗DbZ [2 dimZ + 2]

S

X⊗Cid

≃

X

≃

X X

S[2] ≃ ≃

Similarly, we have S[2] ○ (id ⊗C X) = XS. It follows from X +X = 0 on A●Z ⊗Db[2 dimZ] that

(6.25) ε(k)Sk(X−,−) + ε(k − 2)Sk−2(−,−) = 0, i.e. Sk(X−,−) = Sk−2(−,X−).

Returning to our situation, we begin to construct a polarized bigraded Hodge-Lefschetz structure on

grWH●(X,DRXM).

Fix a Kähler class [ω] on X and let L = [ω]∧ ∶ DRXM→ DRXM[2] be the Lefschetz operator and X1 = 2π
√
−1L as

the discussion above. Relabel the first page of the weight spectral sequence by

V`,k =H`(X,grWk DRXM) =
W
E−k,`+k

1 .

Let V = ⊕`,k∈Z V`,k with filtration F●V induced by F●M. Denote by Ei(R) the induced operator by R on WEi and

let Y2 = E1(R). Denote by S`,k for `, k ∈ Z, the induced pairing on V`,k ⊗ V−`,−k

H`(X,grWk DRXM)⊗H−`(X,grW
−kDRXM)→H0(X,DRX,XgrWk M⊗C grW

−kM)→H0
c (X,DRX,XCX) ≃ C.
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multiplying a sign factor ε(`). Let d1 be the differential of E1. In terms of relabeling, we have

d1 ∶ (V`,k, F●V`,k) → (V`+1,k−1, F●V`+1,k−1).
Theorem 6.6. The tuple (V,X1,Y2, F●V,⊕Sj,k, d1) gives a differential polarized bigraded Hodge-Lefschetz structure
of central weight n.

Proof. Let us first check the conditions in Theorem 2.10 one by one. It is clear that two operators X1,Y2 are commute.
Moreover, we have Y2 ∶ (V`,k, F●V`,k) → (V`,k−2, F●+1V`,k−2) such that

Yk2 ∶ F●V`,k → F●+kV`,−k,

is an isomorphism by Theorem 5.6. Denote by PY2V−j,r the Y2-primitive part kerYr+1
2 ∩ V−j,r =H−j(X,DRXPr). It

follows from Theorem 5.7 that (PY2V−j,r, F●PY2V−j,r) is filtered isomorphic to H−j(Ỹ (r+1),DRỸ (r+1)ωỸ (r+1))(−r) via
φr. Therefore, X1F●PY2V−j,r ⊂ F●−1PY2V−j+2,r and by Hard Lefschetz,

Xj1 ∶ F●PY2V−j,r → F●−jPY2Vj,r

is an isomorphism. It follows from the Lefschetz decomposition of Y2 that Xj1 ∶ F●V−j,r → F●−jVj,r is an isomorphism.
This proves (pbHL1) in Theorem 2.10. (pbHL2) follows from the equation (6.25).

Because the operator R self-adjoin with respect to S by Corollary 6.4, we have Sj,r(−,Y2−) = Sj,r+2(Y2−,−). By

Theorem 6.5, the morphism φr identifies PY2S−j,r =def S−j,r(−,Yr2−) with (−1)r

(r+1)!
SỸ (r+1),−j . Recall that

SỸ (r+1),j(a, b) =
ε(n − r + j + 1)
(2π

√
−1)n−r ∫

Ỹ (r+1)
a ∧ b̄, for a ∈Hn−r+j(Ỹ (r+1)) and b ∈Hn−r−j(Ỹ (r+1)),

and that SỸ (r+1),j(X
j
1−,−) is a polarization on Hn−r−j

prim (Ỹ (r+1),C). The bi-primitive part P−j,r = kerXj1 ∩kerYr2 ∩V−j,r
together with the induced filtration F●P−j,r and the sesquilinear pairing Sj,r(Xj1−, (−Y)r2−) is identified with the

polarized Hodge structure Hn−r−j
prim (Ỹ (r+1),C)(−r) via φr. This proves (pbHL3).

It remains to prove that d1 is a differential of the bigraded Hodge-Lefschetz structure V . Clearly, we have

[d1,X1] = [d1,Y2] = 0

because d1 is induced by the differential of DRXM and d1 preserves F●. The differential d1 is skew-symmetric with
respect to ⊕j,r Sj,r is formally follows the discussion at the beginning of this subsection. Thus, we finished checking
that d1 is a differential. �

Corollary 6.7. We have the following

(1) the Hodge spectral sequence degenerates at FE1,

(2) the weight spectral sequence degenerates at WE2,
(3) The tuple (⊕`∈Z grWH`(X,DRXM), F,X1,Y2) together with the pairing induced by ⊕Sj,k is a polarized

bigradged Hodge-Lefschetz structure of central weight n.

Proof. We slightly modify the idea of cohomological mixed Hodge complex in [Del71] for statement (1) and (2).
I claim that the k-th weight spectral sequence V k`,r =def

WEk
−r,`+r together with the induced filtration F● and the

induced pairing Sk`,r ○ (id ⊗w) ∶ V k`,r ⊗ V k`,r → C is a polarized Hodge structure of weight n + ` + r and the differential

dk ∶ V k`,r → V k`+1,r−k is a morphism of Hodge structures. Indeed, the differential dk is skew-symmetric with respect to

the sesquilinear pairing, i.e. Sk`,r(dk−,−) + Sk`+1,r−k(−, dk−) = 0. Therefore, if (−1)qSk`,r ○ (id ⊗w) for q = n + ` + r − p
is a Hermitian inner product on

(V k`,r)
p,q = {a ∈ F pV k`,r ∶ Sk`,r(a, b) = 0 for all b ∈ F p−`−r+1V k−`,−r}
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then (−1)qSk+1
`,r ○ (id ⊗w) is also a Hermitian inner product on

(V k+1
`,r )p,q = {a ∈ F pV k+1

`,r ∶ Sk+1
`,r (a, b) = 0 for all b ∈ F p−`−r+1V k+1

−`,−r}.

In particular, we have the decomposition

V k+1
`,r = ⊕

p+q=n+`+r

(V k+1
`,r )p,q

and the morphism dk ∶ (V k`,r)
p,q → (V k+1

`,r )p,q is compatible with the decomposition. See Remark 2.11. By induction
the claim is proved. It follows that dk vanishes for k ≥ 2 by it is a morphism of Hodge structures of different weights,
which proves (2).

Since each bigraded piece V`,r = H` (X,grWr DRXM) is pure Hodge structure of weight n + r + `, the two vector

spaces H` (X,grF grWr DRXM) and V`,r is isomorphic. Moreover, the isomorphism is compatible with d1, because
d1 respects F● and

grWr grFDRXM= grF grWr DRXM.

Taking cohomology of d1, we obtain that grWr H
` (X,grFDRXM) is isomorphism to grWr H

` (X,DRXM). It fol-

lows from the dimension reason that H` (X,grFDRXM) is isomorphic to H` (X,DRXM), which is exactly the
degeneration of Hodge spectral sequence at FE1.

The statement (3) follows from Theorem 2.12. �

The third statement in the above corollary ensures that the weight filtration on the hypercohomology of DRXM
is the monodromy weight filtration of the nilpotent operator R, i.e. RW●H

`(X,DRXM) ⊂W●−2H
`(X,DRXM)(−1)

and Rr ∶ grWr H
`(X,DRXM) → grW−rH

`(X,DRXM)(−r) is a filtered isomorphism. We proved Theorem A for the
case when Y is reduced.

7. Non-reduced case: Generalized eigenspace Mα and the weight filtration

Now we move to the general situation. Recall that we have introduced the notations: the index set I consisting
of indices of irreducible components of Y and ei is the multiplicity of Y along the component Yi.

7.1. The generalized eigen-modules Mα. We begin with studying the generalized eigen-modules ker(R−α)∞ of
the morphism R in the category of filtered DX -modules. The generalized eigen-modules are naturally sub-modules
ofM and one can put the induced filtration on it. However, this filtration does not match with the expected weight
of the mixed Hodge structure and is difficult to study. Instead, we use the idea of Saito in [Sai90]: one regards the
generalized eigen-module as a sub-quotient of M and puts the induced filtration on it. It turns out the filtration
behaves nice. Now let us begin to settle some definitions.

Define M≥α = ker∏λ≥α(R − λ)∞, M>α = ker∏λ>α(R − λ)∞ and Mα = M≥α/M>α. Then Mα is canonically
isomorphic to the generalized eigen-module ker (R − α)∞. EndowMα the filtration F●Mα induced from (M, F●M),

F●Mα = M≥α ∩ F●M
M>α ∩ F●M

.

There are parallel definitions on the relative log de Rham complex. Denote by C● = Ω●+n
X/∆(logY )⊗OY for simplicity.

Define sub-complexes of C● by

C●
≥α = C● ⊗OX(−⌈αY ⌉), C●

>α = C● ⊗OX(−⌊αY ⌋ − YRed) and C●
α = C●

≥α/C●
>α,
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where YRed is the associated reduced divisor of Y . Notice that if we let Iα be the subset of I consisting of all i such
that αei is an integer, then

C●
α = C●

≥α ⊗OYIα , where YIα = ∑
i∈Iα

Yi.

One can check C●
α is a generalized eigen-perverse sheaves of the residue [∇]. Since OX(−⌈αY ⌉) is preserved by

relative log differential TX/∆(− logY ), the multiplication by relative log differentials gives a morphism, recalling that
D1,D2, ...,Dn are local generators of TX/∆(− logY ) dual to the local generators ξ1, ξ2, ..., ξn of ΩX/∆(logY ),

(7.26) OX(−⌈αY ⌉) ⊗DX → ΩX/∆(−⌈αY ⌉) ⊗DX , z
⌈αe⌉
I ⊗ P ↦∑

j

ξj ⊗Djz
⌈αe⌉
I ⊗ P = ∑

j

ξj ⊗ z⌈αe⌉I (Dj + αj) ⊗ P,

where, using the multi-index notation, z
⌈αe⌉
I = ∏i∈I z

⌈αei⌉
i denotes the local generator of OX(−⌈αY ⌉) and define

αi = [Di, z
⌈αe⌉
I ]/z⌈αe⌉I = ⌈αei⌉/ei − ⌈αe0⌉/e0. The morphism extends to a complex Ωn+●X/∆(logY )(−⌈αY ⌉) ⊗DX , which

is a subcomplex of Ωn+●X/∆(logY )⊗DX (see (4.17)). Tensoring OY on the left gives C●
≥α⊗DX by the above definition.

Further tensoring OYIα on the left, we obtain the complex of induced DX -modules C●
α⊗DX with the filtration defined

by

F` (C●
α ⊗DX) = C●

α ⊗ F`+n+●DX .

The following two theorems give the description of the generalized eigen-modules in terms of complexes of the induced
DX -modules.

Theorem 7.1. The complex C●
α ⊗DX is filtered acyclic and the characteristic cycle of the 0-th cohomology is

cc (H 0 (C●
α ⊗DX)) = ∑

J⊂I

(#Iα ∩ J) [T ∗Y JX] .

Proof. Similarly to the proof of Theorem 4.1 and Theorem 4.5, the associated graded grF (C●
α ⊗DX) locally is

the Koszul complex of the regular sequence (tα,D1,D2, ...,Dn) over grFDX , where tα = ∏i∈Iα zi is the defining

equation of YIα . It follows that grF (C●
α ⊗DX) is acyclic and therefore, C●

α ⊗DX is filtered acyclic. We also get that
grFH 0(C●

α ⊗DX) is locally represented by

(7.27) ζα ⊗ grFD/(tα,D1,D2, ...,Dn)grFDX , where ζα = z⌈αe⌉I

dz1

z1
∧ dz2

z2
∧⋯ ∧ dzk

zk
∧ dzk+1 ∧⋯ ∧ dzn.

As the calculation in Theorem 4.7, we get the characteristic cycle is ∑J⊂I (#Iα ∩ J) [T ∗Y JX]. �

Theorem 7.2. There exists a canonical filtered isomorphism

(7.28) ψα ∶ (H 0 (C●
α ⊗DX) , F●H 0 (C●

α ⊗DX)) (Mα, F●Mα).∼

In particular, the characteristic cycle cc(Mα) = ∑J⊂I (#Iα ∩ J) [T ∗Y JX].

We first studyM≥α andM>α locally by pointing out their cyclic generator. In principal, this always can be done
because every holonomic DX -module locally is cyclic.

Lemma 7.3. Locally, M≥α is generated by z
⌈αe⌉
I , and M>α is generated by z

⌊αe⌋+1
I where 1 = (1,1, ...,1) ∈ ZI .

Proof. Let us first check that z
⌈αe⌉
I ∈ M≥α. It suffices to check that it is in

ker∏
i∈I

ei−1

∏
j=⌈αei⌉

(R − j

ei
).
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This is follows from direct calculation:

∏
i∈I

ei−1

∏
j=⌈αei⌉

(R − j

ei
)z⌈αe⌉I =∏

i∈I

ei−1

∏
j=⌈αei⌉

(R − j

ei
)z⌈αei⌉i =∏

i∈I

ei−1

∏
j=⌈αei⌉

( 1

ei
zi∂i −

j

ei
)z⌈αei⌉i

=∏
i∈I

1

e
ei−⌈αei⌉
i

zeii ∂
ei−⌈αei⌉
i = t∏

i∈I

1

e
ei−⌈αei⌉
i

∂
ei−⌈αei⌉
i = 0 ∈ M.

Because R satisfies the identity (4.19), M≥α is also equal to the image of ∏i∈I∏
⌈αei⌉−1
j=0 (R − j

ei
). It follows from

∏
i∈I

⌈αei⌉−1

∏
j=0

(R − j

ei
)(1) =∏

i∈I

⌈αei⌉−1

∏
j=0

( 1

ei
zi∂i −

j

ei
) = z⌈αe⌉I ∏

i∈I

1

e
⌈αei⌉
i

∂
⌈αei⌉
i

that z
⌈αe⌉
I ∏i∈I ∂

⌈αei⌉
i generatesM≥α. We deduce that z

⌈αe⌉
I generatesM≥α. The similar argument works forM>α. �

Proof of Theorem 7.2. It follows from the above lemma that Mα is locally isomorphic to

ζ ⊗ (z⌈αe⌉I ,D1,D2, ...,Dn)DX/(z⌊αe⌋+1I ,D1,D2, ...,Dn)DX

where ζ = dz1
z1

∧ dz2
z2

∧⋯ ∧ dzk
zk

∧⋯ ∧ dzn so that ζα = z⌈αe⌉I ζ. Since H 0(C●
α ⊗DX) by (7.26) is locally isomorphic to

ζα ⊗DX/(tα,D1 + α1,D2 + α2, ...,Dn + αn)DX ,

the multiplication H 0(C●
α⊗DX) →Mα, ζα⊗P ↦ ζ ⊗ z⌈αe⌉I P is well-defined, does not depend on the coordinate and

therefore, gives a filtered morphism

ψα ∶ (H 0(C●
α ⊗DX), F●H 0(C●

α ⊗DX)) (Mα, F●Mα).

The surjectivity is clear from the local description. It follows that cc (H 0 (C●
α ⊗DX)) ≥ cc(Mα). Summing over all

the rational numbers α in [0,1) gives

∑
α

cc (H 0 (C●
α ⊗DX)) ≥ ∑

α

cc(Mα) = cc(M).

On the other hand, by Theorem 4.5 and Theorem 7.1, the DX -moduleM is also successive extensions of H 0 (C●
α ⊗DX)

for α ∈ Q ∩ [0,1). Thus,

∑
α

cc (H 0 (C●
α ⊗DX)) = cc(M).

This forces that ψα must be isomorphism and therefore, filtered injective.

It remains to show that

(7.29) F`ψα ∶ F`H 0(C●
α ⊗DX) F`Mα,

is sujective. Suppose that z
⌈αe⌉
I P ∈ DX is a representative of a class in F`Mα. Then we can write

z
⌈αe⌉
I P = P ′ +

n

∑
i=1

DiQi + z⌊αe⌋+1I T

for P ′ ∈ F`+nDX and T,Qi ∈ DX . It follows that

z
⌈αe⌉
I (P − tαT ) = P ′ +

n

∑
i=1

DiQi
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By the regular sequence argument of Theorem 4.5, we can assume that P − tαT is in F`+nDX . Then the class
represented by P − tαT in H 0(C●

α ⊗DX) is actually in F`H
0(C●

α ⊗DX) by the local formula. Therefore, we find a

lifting represented by P in F`H
0(C●

α ⊗DX) of the class of z
⌈αe⌉
I P in F`Mα. We conclude the proof. �

Without loss of generality, we can assume by abuse of notation that locally Iα = {0,1, ..., µ} so that tα = z0z1⋯zµ.
Let Rα be the induced operator (R − α) on (Mα, F●Mα). One easily gets a nice local formula of Rα:

Corollary 7.4. The endormorphism Rα of Mα acts locally as ψα ○ (id ⊗ 1
ej
zj∂j) ○ (ψα)−1 for any j ∈ Iα.

Proof. Because R − α acts on the left hand side of the identification (7.27) by the left multiplication by 1
e0
z0∂0 − α,

the statement follows from

Rα [ζ ⊗ z⌈αe⌉I ] = [ζ ⊗ ( 1

ej
zj∂j − α)(z⌈αe⌉I )]

=[ζ ⊗ (( 1

ej
⌈αej⌉ − α) z⌈αe⌉I + z⌈αe⌉I ( 1

ej
zj∂j))]

=ψα[ζz⌈αe⌉I ⊗ ( 1

ej
zj∂j)] = ψα ○ (id ⊗ 1

ej
zj∂j) ○ ψ−1

α [ζα ⊗ 1] .

This completes the proof. �

By the local formula of Rα, it is obvious that Rα ∶ (Mα, F●Mα) → (Mα, F●+1Mα) is a filtered morphism.

7.2. Striness of Rα. Similar to the reduced case, every power of Rα is strict.

Theorem 7.5. The power of the endomorphism Rα on (Mα, F●Mα) is strict:

(7.30) RaαFbMα = Fa+bRaαMα, for any a ∈ Z≥0 and b ∈ Z.

Let [Rα] be the endomorphism on grFMα induced by Rα. To prove the above theorem, we need the following
statement on ker [Rα] ⊂ grFMα.

Lemma 7.6. ker [Rα]r+1
is locally generated by monomials of degree µ − r that divid tα.

Proof of Theorem 7.5. Temporarily admitting this lemma, let Rr+1
α m be an element in F`+r+1Mα. Assume that

m ∈ FkMα. If k > ` then the projection of Rr+1
α m vanishes in grFk+r+1Mα. It follows from the lemma that m can be

written as

m = ∑
#J=µ−r,
J⊂Iα

zJmJ +
n

∑
i=1

DiQi +m′, for zJ = ∏
j∈J

zj

where Qi,m
′ ∈ Fk−1Mα. Because for every J ⊂ Iα of cardinality r + 1 we can arrange

Rr+1
α zJ = ∏

j∈Iα∖J

1

ej
zj∂jzJ = tα ∏

j∈Iα

1

ej
∂j = 0 ∈ Mα

it follows that Rr+1
α m is equal to,

∑
#J=µ−r,
J⊂Iα

Rr+1
α zJmJ +Rr+1

α (
n

∑
i=1

DiQi +m′) = ∑
#J=µ−r,
J⊂Iα

tαm
′
J +

n

∑
i=1

(Di + α)Rr+1
α Qi +Rr+1

α (m′ −
n

∑
i=1

αQi)

=Rr+1
α (m′ −

n

∑
i=1

αQi) ∈ Mα.
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But now m′ −∑ni=1 αQi ∈ Fk−1Mα. Iterating the above argument one can find m̃ ∈ F`Mα such that

Rr+1
α m = Rr+1

α m̃.

This completes the proof of the theorem. �

Proof of the lemma. The proof is essentially the same as the reduced case. Note that we are now working over the
commutative ring grFDX . We prove by induction on r. Let P ∈ grFDX represent an element of ker[Rα]r+1. When
r = 0, we have

(7.31)
1

e0
z0∂0P = tαQ0 +

n

∑
i=1

DiQi recalling that tα = z0z1⋯zµ.

Then tαQ0 is in the ideal generated by ∂0, ∂1, ..., ∂µ, zµ+1∂µ+1, zµ+2∂µ+2, ..., zk∂k, ∂k+1, ...∂n over grFDX . Because
tα together with ∂0, ∂1, ..., ∂µ, zµ+1∂µ+1, zµ+2∂µ+2, ..., zk∂k, ∂k+1, ...∂n form a regular sequence in grFDX , Q0 can be
written as,

Q0 =
µ

∑
a=0

∂aQa +
k

∑
b=µ+1

zb∂bQb +
n

∑
c=k+1

∂cQc.

Substuiting in (7.31)

1

e0
z0∂0

⎛
⎝
P −

µ

∑
a=0

ea
tα
za
Qa −

k

∑
b=µ+1

ebtαQb
⎞
⎠
∈ (D1,D2, ...,Dn)grFDX .

Now because (z0∂0,D1,D2, ...,Dn) is a regular sequence in grFDX , P is a linear combination of tα/za for a ∈
{0,1, ..., µ} and D1,D2, ...,Dn over grFDX . This concludes the case when r = 0.

Assume the statement is true for the case when the exponent is less than r. Because [Rα] sends the class of P to
ker[Rα]r, by induction hypothesis we have

(7.32)
1

e0
z0∂0P = ∑

#J=µ−r+1,
J⊂Iα

zJQJ +
n

∑
i=1

DiQi recalling that zJ = ∏
j∈J

zj .

Fixing a subset J , then zJQJ is in the submodule generated by za for a ∈ Iα ∖ J , ∂b for b ∈ J , zc∂c for c ∈ I ∖ Iα and
∂d for d ∉ I over grFDX . Because the elements za, ∂b, zc∂c, ∂d for a ∈ Iα ∖ J, b ∈ J, c ∈ I ∖ Iα, d ∉ I together with zJ
form a regular sequence in grFDX , we deduce that

QJ = ∑
a∈Iα∖J

zaQa + ∑
b∈J

∂bQb + ∑
c∈I∖Iα

zc∂cQc +∑
d∉I

∂dQd.

Substituting in (7.32), we deduce that

1

e0
z0∂0

⎛
⎝
P −

⎛
⎝∑b∈J

eb
zJ
zb
Qb + ∑

c∈I∖Iα

eczJQc
⎞
⎠
⎞
⎠
− ∑
a∈Iα∖J

zJzaQa

is in the submodule generated by degree µ−r+1 monomials dividing tα except zJ and by D1,D2, ...,Dn over grFDX .
This means we can reduce zJQJ one by one for each J on the right-hand side of the equation (7.32) and at the last
step we find that 1

e0
z0∂0(P −P ′) is a linear combination of degree µ−r+2 monomials dividing tα and D1,D2, ...,Dn,

where P ′ is a linear combination of degree µ − r monomials dividing tα.

Note that the left multiplication by 1
e0
z0∂0 has the same effect as applying [Rα] on grFMα. Therefore, the class

represented by P − P ′ is in ker[Rα]r since degree µ − r + 2 monomials dividing tα is in ker[Rα]r−1. By induction
hypothesis the class represented P −P ′ is a linear combination of degree µ− r + 1 monomials dividing tα. Therefore,
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the class represented by P in grFMα is a linear combination of degree µ − r monomials dividing tα. This completes
the proof. �

Corollary 7.7. The kerRr+1
α is also generated by degree µ − r monomials dividing tα if one identifies Mα locally

with DX/(tα,D1,D2, ...,Dn)DX .

The proof is the same as the one of Corollary 5.3

7.3. The weight filtration. Now the weight filtration of each generalized eigen-modules interacts well with the
good filtration because of the strictness. Recall that since Rα is nilpotent on Mα, it induces a Z-indexed filtration
W●Mα. We filtered the sub-module WrMα by the induced filtration F●WrMα = F●Mα ∩WrMα. Let

Pα,r =
kerRr+1

α

kerRrα +Rα kerRr+2
α

be the r-th primitive part of grWMα with the filtration defined by

F`Pα,r =
F` kerRr+1

α + kerRrα +Rα kerRr+2
α

kerRrα +Rα kerRr+2
α

.

As the formal proof in Theorem 5.6, we have

Corollary 7.8. The induced operator Rrα ∶ F`grWr Mα → F`+rgrW−rMα is an isomorphism. Therefore, the Lefschetz
decomposition of grWMα respects filtrations, i.e.

F●grWr Mα = ⊕
`≥0,− r2

R`αF●−`Pα,r+2` for any r ∈ Z.

7.4. Summands of the primitive part Pα,r. Recall that Y J = ⋂j∈J Yj and YJ = ⋃j∈J Yj for any subset J of I
and ej is the multiplicity of Yj in Y . Like the reduced case that Pr decomposes into the direct images of ωY J (−r)
for all index subset sJ of cardinality r + 1 (Theorem 5.7), the primitive part Pα,r of the generalized α-eigemodule
also decomposes into direct images of certain filtered DY J -modules Vα,J(−r) for all J of cardinality r + 1 such that
ejα for every j ∈ J is an integer. The filtered DY J -modules Vα,J comes from cyclic coverings so that Pα,r carries
the Hodge theory of the cyclic coverings. In fact, by a well-know construction in [EV92, §3] the direct image of
the de Rham complex of a cyclic covering decomposes into log de Rham complexes of line bundles. A line bundle
with an integrable log connection also can be viewed as a log D-module. This suggests that the D-modules Vα,J is
generated by a certain log D-module Vα,J . If Y is reduced and α = 0, Vα,J is just ωY J . We shall construct auxiliary
log D-modules Vα,J whose log de Rham complex will be used to construct the D-module Vα,J , without using cyclic
cover. The cyclic coverings are involved only when we study the Hodge theory of those D-modules. We fix a rational
number α ∈ [0,1) to simplify the notations and let Iα be a subset of indices consisting of i such that αei is an integer.

Denote by L the line bundle OX (−∑i∈Iα
ei
N
Yi), where N is the greatest common divisor of ei for i ∈ Iα. In

this notation, OX (−⌈αY ⌉) = LαN (−∑i∈I∖Iα⌈αeiYi⌉). Because the line bundle OX(Y ) can be trivialized by a global
section, we get an isomorphism of OX -modules:

(7.33) LN = OX
⎛
⎝
− ∑
i∈Iα

eiYi
⎞
⎠
→ OX

⎛
⎝ ∑
i∈I∖Iα

eiYi
⎞
⎠
.

Choose a local section l of L such that lN ↦∏i∈I∖Iα z
−ei
i under (7.33). Now we shall put a log connection ∇ on

OX(−⌈αY ⌉) = LαN
⎛
⎝
− ∑
i∈I∖Iα

⌈αeiYi⌉
⎞
⎠
.
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First we define, using the product rule

(7.34)
∇lN
lN

= N ∇l
l
= ∑
i∈I∖Iα

−ei
dzi
zi

due to (7.33). Then, let s = lαN ∏i∈I∖Iα z
⌈αei⌉
i be the local frame of OX(−⌈αY ⌉). Noting that αN is a non-negative

integer, the induced log connection works as

(7.35)

∇s
s

=
∇(lαN ∏i∈I∖Iα z

⌈αei⌉
i )

lαN ∏i∈I∖Iα z
⌈αei⌉
i

= αN ∇l
l
+ ∑
i∈I∖Iα

⌈αei⌉
dzi
zi

= ∑
i∈I∖Iα

(⌈αei⌉ − αei)
dzi
zi

= ∑
i∈I∖Iα

{−αei}
dzi
zi
,

where {−} denotes the function of taking fractional part. Putting in more standard form,

∇s = ∑
i∈I∖Iα

{−αei}
dzi
zi

⊗ s.

This log connection is integrable and has poles along Yi for i ∈ I ∖ Iα with eigenvalues {−αei}. We endow the line
bundle OX(−⌈αY ⌉) with this integrable log connection ∇.

Fix a subset J of Iα with #J = r + 1 so that dimY J = n − r. The pullback of (OX(⌈−αY ⌉),∇) by the inclusion
τJ ∶ Y J → X gives an integrable log connection (V ,∇) = (Vα,J ,∇) on Y J with poles along E = Eα,J the pullback of
YI∖Iα . Moreover, the log de Rham complex of (V ,∇)

{V → ΩY J (logE) ⊗ V → ⋯→ Ωn−rY J (logE) ⊗ V }[n − r],

induces a complex of DY J -modules

(7.36) {V ⊗DY J → ΩY J (logE) ⊗ V ⊗DY J → ⋯→ Ωn−rY J (logE) ⊗ V ⊗DY J}[n − r],

which is nothing but the log de Rham complex of V ⊗ DY J . It follows from Lemma 2.3 that the complex is a
resolution of

V = Vα,J =def ωY J (logE) ⊗ V ⊗
D(Y J ,E)

DY J .

We endow V with the filtration F`V = F`Vα,J induced the subcomplex

{V ⊗ F`DY J → ΩY J (logE) ⊗ V ⊗ F`+1DY J → ⋯→ Ωn−rY J (logE) ⊗ V ⊗ F`+n−rDY J}[n − r].

It is clear that F●V is a good filtration. For example, if α = 0, then E is empty and V is just OY J so that V = ωY J
as DY J -modules. Since the eigenvalues of the log connection are in (0,1) if poles exist, the log de Rham complex of
(V ,∇) is the minimal extension R!∗V of the local system V consisting of the flat sections of ∇ on V over Y J ∖ YI∖J
(see [EV92, 1.6]). Later we will put a sesquilinear pairing on V and all the data will yield a pure Hodge structure of
the log de Rham complex of V .

Lemma 7.9. The de Rham complex DRY JV together with the filtration F●DRY JV is isomorphic to the log de Rham
complex Ωn−r+●Y J (logE) ⊗ V with the stupid filtration in the derived category of filtered complexes of C-vector spaces.
In addition, V is holonomic and the characteristic cycle of V is

cc(V) = ∑
K⊂I∖Iα

[T ∗Y K∪JY
J] .
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Proof. We can choose the local frame s of V such that

∇s = ∑
i∈I∖Iα

dzi
zi

⊗ {−αei}s

where zi is the defining equation of Ei for each i. Therefore, the complex (7.36) locally is the Koszul complex over
DY J associated to the sequence

x1∂1 + {−αe1}, x2∂2 + {−αe2}, ..., xp∂p + {−αep}, ∂p+1, ∂p+2, ..., ∂n−r,

for some rearrangement of coordinates and under the trivialization of V given by s. It follows that the associated
graded of (7.36) is the Koszul complex associated to the regular sequence

x1∂1, x2∂2, ..., xp∂ν , ∂p+1, ∂p+2, ..., ∂n−r

over grFDY J . Thus, the complex (7.36) is filtered acyclic. By the similar argument in Theorem 4.5, the DY J -module
V is holonomic and the charateristic cycle cc(V) = ∑K⊂I∖Iα [T ∗Y K∪JY

J].
Moreover, we have isomorphisms in the derived category of complexes of C-vector spaces:

F`DRV = F`+∗V ⊗
−⋆

⋀TY J ≃ Ωn−r+●Y J (logE) ⊗ V ⊗ F`+n−r+●+∗DY J ⊗
−⋆

⋀TY J

≃ Ωn−r+●Y J (logE) ⊗ V ⊗ F`+n−rOY J .
Since F`OY J is OY J or vanishes if ` < 0, the complex Ωn−r+●Y J (logE) ⊗ V ⊗ F`+n−rOY J is the stupid filtration on the
log de Rham complex on V . We conclude the proof. �

We also need an auxiliary DY J -module V∗α,J to identify the primitive part Pα,r which plays the role as ωY J (∗DJ)
in the counterpart for the reduced case (Theorem 5.7). The log de Rham complex of (V ,∇) can be enlarged into

{V → ΩY J (logD) ⊗ V → ⋯→ Ωn−rY J (logD) ⊗ V }[n − r], for D =DJ the pullback of the divisor YI∖J .

It is quasi-isomorphic to Rj∗V for j ∶ Y J ∖ YIα → Y J is the open immersion. By the similar process of the above, it
induces a filtered acyclic complex of DY J -modules

(7.37) {V ⊗DY J → ΩY J (logD) ⊗ V ⊗DY J → ⋯→ Ωn−rY J (logD) ⊗ V ⊗DY J}[n − r].
Let V∗ = V∗α,J be the 0-th cohomology of the above complex and endow it with the filtration such that F`V∗ = F`V∗α,J
is induced by the subcomplex

{V ⊗ F`DY J → ΩY J (logD) ⊗ V ⊗ F`+1DY J → ⋯→ Ωn−rY J (logD) ⊗ V ⊗ F`+n−rDY J}[n − r].
We naturally get an induced morphism (V, F●V) → (V∗, F●V∗) from the inclusion of the log de Rham complexes.

Lemma 7.10. The canonical morphism (V, F●V) → (V∗, F●V∗) is injective, whose image is generated by the mono-
mials defining D −E.

Proof. Suppose x1x2⋯xp is the local defining equation of E and x1x2⋯xq is the local defining equation of D for
q ≥ p + 1. Since V is locally generated by the class of

p

⋀
i=1

dxi
xi

∧ dxp+1 ∧⋯ ∧ dxn−r ⊗ s⊗ 1

and V∗ is locally generated by the class of
q

⋀
i=1

dxi
xi

∧ dxq+1 ∧⋯ ∧ dxn−r ⊗ s⊗ 1,
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the image is generated by the class of ⋀qi=1
dxi
xi

∧ dxq+1 ∧⋯ ∧ dxn−r ⊗ s⊗ xp+1xp+2⋯xq. The morphism locally is

DY J /(x1∂1 + r1, ..., xp∂p + rp, ∂p+1, ..., ∂n−r)DY J → DY J /(x1∂1 + r1, ..., xq∂q + rq, ∂q+1..., ∂n−r)DY J ,

with [P ] ↦ [xp+1xp+2⋯xqP ] where r1, r2, ..., rp are the eigenvalues of ∇ on V and rp+1 = rp+2 = ⋯ = rq = 0. Since

Ωn−rY J (logE) ⊗ V = F−(n−r)V → F−(n−r)V∗ = Ωn−rY J (logD) ⊗ V

is injective, by induction, it suffices to show that grFV → grFV∗ is injective. Due to the complexes (7.36) and (7.37)
is filtered acyclic, the morphism on the associated graded modules works as, in the local representation,

grFDY J /(x1∂1, ..., xp∂p, ∂p+1, ..., ∂n−r)grFDY J → grFDY J /(x1∂1, ..., xq∂q, ∂q+1..., ∂n−r)grFDY J ,

with [P ] ↦ [xp+1xp+2⋯xqP ]. By induction on the number of components of D − E, we can assume q = p + 1. Let
P ∈ grFDY J represent a class in the kernel. Then

xqP =
q

∑
i=1

xi∂iPi +
n−r

∑
j=q+1

∂jPj ∈ grFDY J .

Subtracting xq∂qPq on the both sides yeilds

xq(P − ∂qPq) =
q−1

∑
i=1

xi∂iPi +
n−r

∑
j=q+1

∂jPj ∈ grFDY J .

Since xq, x1∂1, ..., xq−1∂q−1, ∂q+1, ..., ∂n−r is a regular sequence over grFDY J ,

(P − ∂qPq) =
q−1

∑
i=1

xi∂iP
′
i +

n−r

∑
j=q+1

∂jP
′
j ∈ grFDY J .

We find that P is a linear combination of x1∂1, x2∂2, ..., xp∂p, ∂p+1, ..., ∂n−r over grFDY J . We conclude the proof. �

Remark 7.11. One can use Riemann-Hilbert correspondence to conclude that V is the minimal extension of V ∣Y J∖D
and V∗ is the ∗-extension of V ∣Y J∖D, which is overkill in our situation. The above argument also showed the strictness,
i.e., F`V = F`V∗ ∩ V.

Putting in more general notations and summarizing what we have proved in the above two lemmas:

Theorem 7.12. The filtered DY J -module (Vα,J , F●) is holonomic whose de Rham complex DRY JVα,J together with
the induced filtration is isomorphic to the log de Rham complex Ωn−r+●Y J (logEα,J) ⊗ Vα,J with the stupid filtration in
the derived category of filtered complexes of C-vector spaces and whose characteristic cycle is

cc(Vα,J) = ∑
K⊂I∖Iα

[T ∗Y K∪JY
J] .

The canonical filtered morphism (Vα,J , F●Vα,J) → (V∗α,J , F●V∗α,J) is injective and the image is generated by the

monomial defining the divisor DJ −Eα,J .

7.5. Identifying the primitive part Pα,r. Now we are going to identify the r-th primitive part (Pα,r, F●Pα,r)
with a direct sum of Vα,J(−r) for J ranging over subsets Iα of cardinality r + 1. The argument is parallel to
the one of the reduced case (Theorem 5.7), replacing M by Mα, R by Rα, ωY J by Vα,J , ωY J (∗DJ) by V∗α,J ,

the complex Ωn+●X/∆(logY )∣Y by C●
α = Ωn+●X/∆(logY )(−⌈αY ⌉)∣YIα and the log de Rham complex Ωn−r+●Y J (logDJ) by

Ωn−r+●Y J (logDJ) ⊗ Vα,J .

Theorem 7.13. Let Vα,r = ⊕J τ
J
+ Vα,J for J running over the subsets of Iα of cardinality r + 1, where τJ ∶ Y J ↪ X

is the closed embedding. Then there exists an isomorphism φα,r ∶ (Pα,r, F●Pα,r) → Vα,r(−r) in the category of filtered
DX-modules.
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Proof. Because the log connection (7.33) we constructed on OX(−⌈αY ⌉) has zero residue on Yi for i ∈ Iα, we have
the residue morphism between log de Rham complexes.

ResY J ∶ Ω●+n+1
X (logY ) ⊗OX(−⌈αY ⌉)∣YIα → Ω●+n−r

Y J (logDJ) ⊗ Vα,J , where DJ is the pull back of YI∖J

for J ⊂ Iα of cardinality r + 1, up to a sign depending on the order of the indices. Denote by B●
α the log de Rham

complex Ω●+n+1
X (logY ) ⊗ OX(−⌈αY ⌉) of OX(−⌈αY ⌉). The residue morphism ResY J extends to a morphism of the

complexes of induced DX -modules

ResY J ∶ B●
α∣YIα ⊗DX → Ω●+n−r

Y J (logDJ) ⊗ Vα,J ⊗DX .

Let H`α be the `-th cohomology of B●
α∣YIα ⊗DX . Then we have an induced morphism ResY J ∶ H0

α → V∗α,J by taking

cohomology. Let Resα,r = ⊕ResY J ∶ H0
α → V∗α,r(−r) where V∗α,r = ⊕J V∗α,J for J running over cardinality r+1 subsets

of Iα. Because dt
t
∧ ∶ Ω●+n

X/∆(logY )(−⌈αY ⌉) → Ω●+n+1
X (logY )(−⌈αY ⌉) also extends to the complexes of the induced

DX -modules, we obtain a short exact sequence

0 C●−1
α ⊗DX B●−1∣YIα ⊗DX C●

α ⊗DX 0.
dt
t ∧

The associated long exact sequence gives

(7.38)

0 H−1
α Mα

Mα H0
α 0.

Rα
dt
t ∧

By pre-composing dt
t
∧, we get a morphism

Resα,J ○
dt

t
∧ ∶ Mα → V∗α,r(−r), [ζα ⊗ P ] → [Resα,J

dt

t
∧ ζα ⊗ P ].

Recall that every element inMα is locally represented by ζα⊗P for ζα = z⌈αe⌉I
dz1
z1

∧ dz2
z2

∧⋯∧ dzk
zk

∧⋯∧dzn given that

locally I = {0,1, . . . , k}, and P ∈ DX . By Corollary 7.7, every class in kerRr+1
α is represented by ζα ⊗ zJP for some

ordered index subset J of Iα of cardinality r+1 and J is the complement of J in Iα and zJ = ∏j∈J zj . Thus, its image

under the above morphism only contained in the component V∗α,J(−r) because zJ vanishes on other components.
The image is the class represented by

(7.39) Resα,J
dz0

z0
∧ dz1

z1
∧⋯∧ dzk

zk
∧⋯∧ dznz⌈αe⌉I ⊗ zJP = ±dzI∖J

zI∖J
∧ dzk+1 ∧⋯∧ dzn ⊗ sα,J ⊗ zJP ∈ Ωn−rY J ⊗Vα,J ⊗DX ,

where sα,J is the local frame of Vα,J by restricting z
⌈αe⌉
I and the sign is depending on the order of J . It also

follows from the calculation that the image does not have pole along the pull-back of YJ . So it is contained in the

subsheaf consisting of classes represented by Ωn−rY J (logEα,J) ⊗ Vα,J ⊗DX , where Eα,J is the pull-back of YI∖Iα so

that DJ − Eα,J is the pull-back of YJ . This means that the image of the class represented by (7.39) is also in the
image of the canonical inclusion:

τJ+ Vα,J(−r) ↪ τJ+ V∗α,J(−r),

[dzJ ∧
dzI∖Iα
zI∖Iα

∧ dzk+1 ∧⋯ ∧ dzn ⊗ sα,J ⊗ P ] ↦ [
dzJ
zJ

∧ dzI∖Iα
zI∖Iα

∧ dzk+1 ∧⋯ ∧ dzn ⊗ sα,J ⊗ zJP ].
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See Theorem 7.12. Therefore, the morphism kerRr+1
α → V∗α,r(−r) constructed above factors through Vα,r(−r).

Summarizing, we have the following diagram.

kerRr+1
α Vα,r(−r)

Mα H0
α V∗α,r(−r)

ρα,r

dt
t ∧ Resα,r

In fact, the kernel of ρr contains kerRrα: for an element in kerRrα locally represented by ζα ⊗ zKP for K a subset of
Iα such that the cardinality of Iα∖K is r, its image under ρα,r is zero because zK annihilates all Ωn−rY J (logDJ)⊗Vα,J
for any J ⊂ Iα of cardinality r + 1. The morphism ρα,r also kills Rα kerRr+2

α because dt
t
∧ vanishes on the image of

Rα by (7.38). It follows that ρα,r factors through a filtered morphism

φα,r ∶ Pα,r =
kerRr+1

α

kerRrα +Rα kerRr+2
α

→ Vα,r(−r).

For dzJ ∧
dzI∖Iα
zI∖Iα

∧ dzk+1 ∧ ⋯ ∧ dzn ⊗ sα,J ⊗ P ∈ Ωn−rY J (logEα,J) ⊗ Vα,J ⊗ F`DX representing a class in F`τ
J
+ Vα,J(−r)

where J ⊂ Iα of cardinality r + 1, we can find a lifting represented by ζα ⊗ zJP in F` kerRr+1
α , which means

F` kerRr+1
α → F`+rVα,r

is surjective, i.e. the morphism φα,r is filtered surjective. It remains to prove that φα,r is injective. We prove that
φα,r is an isomorphism by counting the characteristic cycles as in Theorem 5.7. Because φα,r is surjective, one gets

cc(Pα,r) ≥ cc(Vα,r).
It follows from Corollary 7.12 that

cc(Vα,r) = ∑
J⊂Iα,

#J=r+1

cc(τJ+ Vα,J) = ∑
J⊂Iα,

#J=r+1

∑
K⊂I∖Iα

[T ∗Y J∪KX] = ∑
J⊂I,

#J∩Iα=r+1

[T ∗Y JX] .

One the other hand, by the Lefschetz decomposition and Theorem 7.2,

∑
J⊂I

#(J ∩ Iα) [T ∗Y JX] = cc(Mα) = cc(grWMα) = ∑
r≥0

(r + 1)cc(Pα,r) ≥ ∑
r≥0

(r + 1)cc(Vα,r)

= ∑
r≥0

∑
J⊂I,

#J∩Iα=r+1

(r + 1) [T ∗Y JX] = ∑
J⊂I

#(J ∩ Iα) [T ∗Y JX] .

It follows that all inequalities above are equalities and in particular,

cc(Pα,r) = cc(Vα,r)
from which we conclude that φα,r is an isomorphism between the underlying DX -modules. Plus it is filtered surjective,
we conclude that φα,r is filtered isomorphism. �

8. Non-reduced case: Sesquilinear pairing and limiting mixed Hodge structure

8.1. Kähler package of cyclic covering. To accomplish our goal, we need to show that the sum of all hyperco-
homologies of the complex

Ω●
Y J (logEα,J) ⊗ Vα,J[n − r]

has a polarized Hodge-Lefschetz structure and hard Lefschetz so that the hypercohomology of the de Rham complex
of the primitive part Pα,r will inherit the properties by Theorem 7.12 and Theorem 7.13. For this, we need to use
the geometry of cyclic coverings.



50 LIMITS OF HODGE STRUCTURES VIA HOLONOMIC D-MODULES

We first give another description of the integrable log connection (7.33) using cyclic coverings. Fix a rational
number α in [0,1), Because the isomorphism,

LN = OX
⎛
⎝
− ∑
i∈Iα

eiYi
⎞
⎠
→ OX

⎛
⎝ ∑
i∈I∖Iα

eiYi
⎞
⎠
,

we obtain a cyclic covering πα ∶Xα →X by taking the N -th roots out of ∑i∈I∖Iα eiYi and normalizing it. The direct
image πα∗OXα decomposes into eigenspaces with respect the Galois action as well as the direct image of exterior
differential πα∗OXα → πα∗ΩXα [EV92, Theorem 3.2]. The line bundle

LαN
⎛
⎝
− ∑
i∈I∖Iα

⌈αeiYi⌉
⎞
⎠
,

is the α-eigenspaces of πα∗OXα for some suitable choice of a generator of the Galois group. Because the decomposition
respects the exterior differential, we obtained an integrable log connection with eigenvalues {αei} along Yi for each
i ∈ Iα. Note that Xα might not be smooth.

Let J ⊂ Iα of cardinality r + 1. Since Y J is not contained in YI∖Iα , the fiber product Y Jα = Xα ×X Y J is again a
cyclic covering of Y J by taking the N -th roots out of ∑i∈I∖Iα eiYi ∩Y J . Let πJα ∶ Y Jα → Y J be the second projection.

(8.40)

Y Jα Xα

Y J X

πJα πα

τJ

We conclude that (Vα,J ,∇) is the α-eigenspace of πJα∗(OY Jα , d). The log de Rham complex of (Vα,J ,∇) is a summand

of the direct image of the de Rham compolex πJα∗Ω●+n−r
Y Jα

of Y Jα .

We shall work in the general setting and adopt the convention in [EV86] and [EV92]. Let L be a line bundle
on a Kähler manifold Z with a Kähler form ω and D = ∑i νiDi be a simple normal crossings divisor such that for

some N > 1 one has LN = OZ(D). Define L(j) = Lj(−⌊ jD
N

⌋) for 1 ≤ j ≤ N − 1. One puts an integrable logarithmic

connection on L(j) with poles along D(j), where

D(j) = ∑
jνi
N ∉Z

Di.

Let ι ∶ U ↪ Z be the complement of D and V is the underlying local system of L∣U . Let τ ∶ Z ′ → Z be the cyclic

covering obtained by first taking N -th root out of D then taking the normalization and π ∶ Z̃ → Z ′ be a log resolution
of singularity equivariant with respect to the Galois group Gal (Z ′/Z) = ⟨σ⟩ and let E be the simple normal crossing
exceptional divisor.

Z̃ Z ′ Zπ

η

τ

Note that Z̃ is Kähler because it is a resolution of subvariety of the geometric line bundle of L, which is Kähler,
although the induced Kähler class does not relate well with ω onX. The pullback η∗ω is only positive over Ũ = η−1(U),
but one can still cook up a Kähler class by adding a small multiple of the first Chern class Θ ∈ H2(Z̃,Z(1)) of the

relative ample line bundle of the projective morphism π ∶ Z̃ → Z ′. We can assume Θ is invariant under σ by averaging
it.

Lemma 8.1. Notations as above, the cohomology class [η∗ω] + λ(2π
√
−1)−1Θ ∈H1,1(Z) ∩H2(Z,R) is an invariant

Kähler class for λ is a sufficient small positive number.
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Proof. Let D̃i be the strict transformation of τ−1(Di) and si ∈ H0(Z̃,OZ̃(D̃i)) whose zero locus is D̃i. Let hi be a

Hermitian metric on each line bundle OZ̃(D̃i) and ρi be sufficient small positive bump function supported in a small

neighborhood of D̃i for each i. Then the (1,1)-form

η∗ω +∑
i

√
−1

2π
∂∂̄ρihi(si, si)

is positive on Z̃ −E but only semi-positive over E. However, the class (2π
√
−1)−1Θ is positive over E. Therefore,

for λ sufficient small positive, the class of

η∗ω +∑
i

√
−1

2π
∂∂̄ρihi(si, si) + λ(2π

√
−1)−1Θ

is a Kähler class. But ∂∂̄ρihi(si, si) is exact. The cohomology class of above just equals [η∗ω] + λ(2π
√
−1)−1Θ in

H1,1(Z̃) ∩H2(Z,R). It is invariant because both [η∗ω] and Θ are invariant. �

Lemma 8.2. The hypercohomology Hk (Z,Ω●
Z(logD(j)) ⊗ L(j)−1) is a summand of ξ−j-eigenspace of Hk(Z̃), and

thus it is a sub-Hodge structure of weight k.

Proof. It follows from (1.6) in [EV86] that Rι!V−j , Rι∗V−j and Ω●
Z(logD(j))⊗L(j)−1

are all quasi-isomorphic. Taking
hypercohomology gives canonical isomorphisms

Hk(Z,Ω●
Z(logD(j)) ⊗ L(j)−1

) ≃Hk
c (U,V−j) ≃Hk(U,V−j).

Because η is étale over U , Hk(U,Vj) (resp. Hk
c (U,Vj)) is a ξj-eigenspace of Hk(Ũ ,C) (resp. Hk

c (Ũ ,C)) for the
cyclic action σ, where ξ is a N -th root of unity. Then the canonical morphisms of mixed Hodge structures

(8.41) Hk
c (Ũ) →Hk(Z̃) →Hk(Ũ)

respect the eigenspaces decomposition because we make Z̃ equivariant. We complete the proof. �

Lemma 8.3. Let X = 2π
√
−1L where L = [ω]∧ is the Lefschetz operator on Z. The following two statements hold:

(1) Hard Lefschetz is valid on the hypercohomolgy, i.e.

Xk ∶HdimZ−k (Z,Ω●
Z(logD(j)) ⊗ L(j)−1

) →HdimZ+k (Z,Ω●
Z(logD(j)) ⊗ L(j)−1

) (k)

is an isomorphism of Hodge structures.
(2) The pairing

(8.42) (m′,m′′) ↦ ε(dimZ + k + 1)
(2π

√
−1)dimZ ∫

Z̃
η∗ (XdimZ−km′ ∧m′′)

is a polarization on the primitive part of Hk (Z,Ω●
Z(logD(j)) ⊗ L(j)−1), where η∗ (XdimZ−kα ∧ β) is the top

form determined by the inclusion η∗ΩdimZ
Z (logD(j)) ⊗ L(j)−1 ⊂ ωZ̃ .

Proof. Let L̃ = [η∗ω + λΘ]∧ be the Lefschetz operator on Z̃. Then the Hard Lefschetz on Z̃ says

X̃k ∶HdimZ−k(Z̃) →HdimZ+k(Z̃)(k)
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is an isomorphism, where X̃ =def 2π
√
−1L̃. Because L̃ is invariant and respects the morphisms in (8.41), the above

isomorphism is compatible with eigenspaces decomposition, it follows that

(8.43) X̃k ∶HdimZ−k (Z,Ω●
Z(logD(j)) ⊗ L(j)−1

) →HdimZ+k (Z,Ω●
Z(logD(j)) ⊗ L(j)−1

) (k)

is injective by Lemma 8.2. In fact, the ξi-eigenspace of Hk
c (Ũ) is orthogonal to the ξj-eigenspace of H2 dimZ−k(Ũ)

with respect to Poincaré pairing unless i+j ≡ 0 (modN): for a in the ξi-eigenspace ofHk
c (Ũ) and b in the ξj-eigenspace

of H2 dimZ−k(Ũ) then

ξi ∫
Ũ
a ∧ b = ∫

Ũ
σ∗a ∧ b = ∫

Ũ
a ∧ (σ−1)∗b = ξ−j ∫

Ũ
a ∧ b,

which means ∫Ũ a ∧ b is zero unless i + j ≡ 0 (modN). It follows from Poincaré duality on Hk
c (Ũ) ×H2 dimZ−k(Ũ)

that the ξi-eigenspace of Hk
c (Ũ) is Poincaré dual to the ξ−i-eigenspace of H2 dimZ−k(Ũ). On the other hand, since

the ξi-eigenspace is complex conjugate to the ξ−i-eigenspace, the ξi-eigenspace of Hk
c (Ũ) and the ξi-eigenspace of

H2 dimZ−k(Ũ) have the same dimension. It follows that the morphism (8.43) is an isomorphism.

The operator L̃ has the same effect as η∗L over H●
c (Ũ), because Θ is supported on E. Therefore,

Xk ∶HdimZ−k (Z,Ω●
Z(logD(j)) ⊗ L(j)−1

) →HdimZ+k (Z,Ω●
Z(logD(j)) ⊗ L(j)−1

) (k)

is an isomorphism. We conclude (1). It also follows that η∗ identifies the primitive part of X

HdimZ−k
prim (Z,Ω●

Z(logD(j)) ⊗ L(j)−1
)

with the primitive part of X̃

ker(X̃k+1 ∶HdimZ−k (Z,Ω●
Z(logD(j)) ⊗ L(j)−1

) →HdimZ+k+2 (Z,Ω●
Z(logD(j)) ⊗ L(j)−1

)) .

Thus, HdimZ−k
prim (Z,Ω●

Z(logD(j)) ⊗ L(j)−1) is a sub-Hodge structure of HdimZ−k
prim (Z̃). And the restriction of the

polarization is again a polarization. This proves (2). �

The above two lemmas indicate that the sum of hypercohomologies

⊕
k∈Z

Hk (Z,Ω●
Z(logD(j)) ⊗ L(j)−1

)

is a polarized sub-Hodge-Lefschetz structure of ⊕k∈ZH
k(Z̃,C). In practice, it is more convenient to make the

polarization independent of the resolution of singularities and intrinsic on Z. Heuristically, the local system V−j

over U inherits a pairing from CŨ and it has a Hodge theoretic extension on its canonical extension. First, we can

resolve Ω●
Z(logD(j)) using A●Z(logD(j)), the complex of C∞-forms with log poles along D(j). Note that we have

the inclusion of sheaves

AdimZ+k
Z (logD(j)) ⊗ L(j)−1

∧AdimZ−k
Z (logD(j)) ⊗ L(j)−1 ⊂ A2 dimZ

Z ⊗L(j)−1
(D(j)) ⊗

C
L(j)−1(D(j)).

Since LN ≃ OZ(D), picking local section of l such that lN = ∏i x
−νi
i we can put a canonical singular Hermitian metric

on L by setting the weight function as

∣l∣h =∏
i

∣xi∣−νi/N , where xi is the local defining equation of Di.
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Then the induced singular Hermitian metric on L(j)−1(D(j)) = L−j(⌊ jD
N

⌋ +D(j)) locally is

RRRRRRRRRRRR
l−j∏

i

x
−⌊jµi/N⌋

i ∏
jνi/N∉Z

x−1
i

RRRRRRRRRRRRh
=∏

i

∣xi∣jνi/N−⌊jνi/N⌋ ∏
jνi/N∉Z

∣xi∣−1 =∏
i

∣xi∣−{−jνi/N}.

For any smooth top form Υ with values in L(j)−1(D(j)) ⊗C ⊗L(j)−1(D(j)) we can associate an integrable top form
(Υ)h = fg∣s∣2h vol(Z) by fixing a volume form vol(Z) on Z and writing locally Υ = fs⊗ gsvol(Z) for s a local fram

of L(j)−1(D(j)). Therefore, we obtain a well-defined pairing,

(8.44) AkZ(logD(j)) ⊗ L(j)−1
∧AkZ(logD(j)) ⊗ L(j)−1 → C, (m′,m′′) ↦ ε(dimZ + k + 1)

(2π
√
−1)dimZ ∫

Z
(XdimZ−km′ ∧m′′)

h
.

Since η ∶ Z̃ → Z is generic finite, it follows from

∫
Z̃
η∗ (XdimZ−km′ ∧m′′) = N ∫

Z
(XdimZ−km′ ∧m′′)

h

that (8.44) induces the same polarization in the statement (2) of the above lemma except for the constant N .

Applying to our situation yields that Vα,J(Eα,J) carries a canonical singular Hermitian metric ∣ − ∣h with local

weight functions ∏j∈I∖Iα ∣zj ∣−{αej} restricted on Y J , where zi is the defining equation of Yi. Provided the above two
lemmas, the sum of hypercohomologies

⊕
k∈Z

Hk (Y J ,Ω●+dimY J

Y J (logEα,J) ⊗ Vα,J)

is a polarized Hodge-Lefschetz structure of central weight dimY J for any non-empty subset J of Iα. Similarly
to Example 2.9 this is also determined by the filtered DY J -module (Vα,J , F●Vα,J) with the sesquilinear pairing

Sα,J ∶ Vα,J ⊗C Vα,J → CY J is given by

(8.45) ([s1 ⊗ P1] , [s2 ⊗ P2]) ↦
ε(dimY J + 1)
(2π

√
−1)dimY J ∫Y J (P1P2−) (s1 ∧ s2)h

for local sections of Vα,J (see (8.40)) represented by si ⊗ Pi such that si local sections of

ωY J (logEα,J) ⊗ Vα,J = ωY J ⊗ Vα,J(Eα,J)

and Pi is a differential operator i = 1,2. Here, (s1 ∧ s2)h is the top form induced by the singular Hermitian metric
on Vα,J(Eα,J). Summarizing the results we proved in this subsection:

Corollary 8.4. With notations as above, the direct sum of all hypercohomologies of the de Rham complex of
(Vα,J , F●Vα,J) underlies a polarized Hodge-Lefschetz structure of central weight dimY J with the Hodge filtration
induced by F●Vα,J and with the polarization, on degree k, given by the following induced pairing scaled by ε(k),

Hk(Y J ,DRY JVα,J) ⊗H−k(Y J ,DRY JVα,J) H0(Y J ,DR
Y J ,Y J

Vα,J ⊗C Vα,J) H0(Y J ,DR
Y J ,Y J

CY J ) ≃ C.
Sα,J

Remark 8.5. We cannot make the Hodge structure in the above corollary over Q because there is no eigenvalue
decomposition of Q-structure.
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8.2. Sesquilinear pairing. As in the reduced case, we need a sesquilinear pairing to construct the limiting mixed
Hodge structure. In fact, the construction for the reduced case still works with a little modification. Note that for

any test function η over a local chart U and two local sections ζ1⊗P1, ζ2⊗P2 of H0 (U,ΩnX/∆(logY )(−⌈αY ⌉) ⊗DX),

the function

t↦ ε(n + 1)
(2π

√
−1)n ∫Xt

P1P2(η)ζ1 ∧ ζ2.

may have order approximately at most ∣t∣2α (− log ∣t2∣)k near t = 0 where k + 1 is the number of components of YIα
that intersect in U . This suggests that we can define the pairing Sα on Mα by

⟨Sα([ζ1 ⊗ P1], [ζ2 ⊗ P2]), η⟩ =def Ress=−α
ε(n + 2)

(2π
√
−1)n+1 ∫X ∣t∣2sP1P2(η)

dt

t
∧ ζ1 ∧

dt

t
∧ ζ2

= Ress=−α
ε(2)

2π
√
−1
∫

∆
∣t∣2s dt

t
∧ dt
t

( ε(n + 1)
(2π

√
−1)n ∫Xt

P1P2(η)ζ1 ∧ ζ2) .

Again, we have not check that Sα is well-defined but let us do some local calculations to see what is going on.

Example 8.6. Suppose Y = 2Y0 for Y0 is a smooth manifold and t is equal to z2
0 on X. Then R satisfies the

equation R(R − 1
2
) = 0. We deduce that M has two eigenspaces M0 and M 1

2
by (4.19). Then for any local sections

ζi ⊗ Pi = dz1 ∧ dz2 ∧ ⋯ ∧ dzn ⊗ Pi of ΩnX/∆(logY ) ⊗ DX , i = 1,2 representing classes of M0, the calculation of the

pairing S0([ζ1 ⊗ P1], [ζ2 ⊗ P2]) is exactly as in the reduced case and as it turned out

S0([ζ1 ⊗ P1], [ζ2 ⊗ P2]) = iY0+SY0 ([ζ1 ⊗ P1], [ζ2 ⊗ P2]) .

By Theorem 7.3 M 1
2

is locally generated by the class represented by dz1 ∧ dz2 ∧⋯ ∧ dzn ⊗ z0. Now for any local

sections ζ ⊗ z0Pi = dz1 ∧ dz2 ∧⋯ ∧ dzn ⊗ z0Pi representing classes of M 1
2
, we have

⟨S 1
2
([ζ ⊗ z0P1], [ζ ⊗ z0P2]), η⟩ = Ress=− 1

2
∫
X

∣z0∣4sP1P2(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

= ∫
X

1

2
log ∣z0∣2∂0∂0P1P2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

by Poincaré-Lelong equation [GH14, Page 388] = ∫
Y0

1

2
P1P2(η)

n

⋀
i=1

(
√
−1

2π
dzi ∧ dzi)

= 1

2
⟨iY0+SY0([ζ1 ⊗ P1] , [ζ2 ⊗ P2]), η⟩

= 1

2
⟨iY0+S 1

2 ,{0}([ζ1 ⊗ z0P1] , [ζ2 ⊗ z0P2]), η⟩,

Recall S 1
2 ,{0} defined in (8.45): since we have the isomorphism OY0(2Y0) = OY0(Y ) ≃ OY0 there exists a canonical

singular Hermitian metric (this case is smooth) ∣ − ∣h on OY0(−Y0) by setting the local frame z0 has norm 1 so that

iY0+S 1
2 ,{0}([ζ1 ⊗ z0P1] , [ζ2 ⊗ z0P2]), η⟩ = ∫

X
∣z0∣2hP1P2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi) = iY0+SY0([ζ1 ⊗ P1] , [ζ2 ⊗ P2]), η⟩.

The above equality can also be explained as follows: the cyclic covering constructed by taking out of the second root
of the constant section of OY0

(2Y0) ≃ OY0 has two connected components and each component is isomorphic to Y0.

Let η be a test function over an open subset U . For any two sections m1,m2 ∈H0(U,ΩnX/∆(logY )(−⌈αY ⌉)⊗DX),
the (2n + 2)-form dt

t
∧m1 ∧ dt

t
∧m2 is smooth of outside Y and has pole along Y . Locally, the (2n + 2)-form just
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is ∣zI ∣2⌈αe⌉P1P2(η)dtt ∧ ζ ∧ dt
t
∧ ζ, where mj = ζ ⊗ z⌈αe⌉I Pj for ζ = dz1

z1
∧ dz2

z2
∧ ⋯ ∧ dzk

zk
∧ ⋯ ∧ dzn and j = 1,2. Let

F (s) = F (s,m1,m2, η) be the meromorphic extension of

ε(n + 2)
(2π

√
−1)n+1 ∫X ∣t∣2s dt

t
∧m1 ∧

dt

t
∧m2(η)

via integration by parts. The function F (s) is well defined when Re s > −α and has a pole at s = −α. We only care
about the polar part of F (s) at s = −α.

Theorem 8.7. The polar part of F (s) at s = −α is only depends on the classes of m1 and m2 in Mα.

Proof. Let {ρλ} be a partition of unity of the open covering {Uλ} by local charts. Then

F (s) = ∑
λ

ε(n + 2)
(2π

√
−1)n+1 ∫

Uλ
∣t∣2s dt

t
∧m1 ∧

dt

t
∧m2(ρλη).

Since ρλη is a test function over local chart Uλ, we can assume U itself is a local chart. We assume k+1 components
of Y intersect in U .

Lemma 8.8. Under the assumption that mi = ζα ⊗ Pi for ζα = z⌈αe⌉I
dz1
z1

∧ dz2
z2

∧ ⋯ ∧ dzk
zk

∧ dzk+1 ∧ ⋯ ∧ dzn and for

i = 1,2, the followings are valid.

(1) the order of the pole of F (s) at s = −α is at most k + 1;
(2) if Pi = tαP ′

i for one of i = 1,2, then F (s) is holomorphic at s = −α;
(3) for 0 ≤ j ≤ k we have,

F (s, ζα ⊗ P1, ζα ⊗
1

ej
zj∂jP2, η) =F (s, ζα ⊗

1

ej
zj∂jP1, ζα ⊗ P2, η) = −(s + ⌈αej⌉

ej
)F (s, ζ1 ⊗ P1, ζ2 ⊗ P2, η).

Proof of the lemma. We work out Laurent series of F (s) at s = −α:

F (s) = ∫
X

∣zI ∣2se+2⌈αe⌉−2⋅1P1P2(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

= ∫
X

∣zI ∣2(s+α)e−2⋅1∣zI ∣2{−αe}P1P2(η)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

= ∫
X
(s + α)−2(k+1)∣zI ∣2(s+α)eη′

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi) where η′ = ∂I∂I (∣zI ∣2{−αe}P1P2η)

=
∞

∑
`=0

1

`!
(s + α)`−2(k+1) ∫

X
(log ∣zI ∣2e)`η′

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi).

When ` < k + 1, then the form

(log ∣zI ∣2e)`η′
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi).

is actually exact because one of the ai must be zero in the expansion of (log ∣zI ∣2e)` into the linear combination of

∏k
i=0 (log ∣zi∣2ei)

ai
such that ∑ki=0 ai = `. Therefore, the order of the pole at s = −α is at most k + 1.

When P1 = tαP ′
1, the form

∣zI ∣2(s+α)e−2⋅1∣zI ∣2{−αe}tαP ′
1P2(η)

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)
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is integrable when s = −α where {−αe} is the multi-index such that {−αe}i = {−αei}. Therefore, F (s) is holomorphic
at s = −α. It is the same when P2 = tαP ′

2.

Lastly, by linearity we can assume that P1 = P2 = 1.

F (s, ζα ⊗ 1, ζα ⊗
1

ej
zj∂j , η) =

ε(n + 2)
(2π

√
−1)n+1 ∫X ∣t∣2s ( 1

ej
zj∂jη)

dt

t
∧ ζα ∧

dt

t
∧ ζα

=∫
X

∏
i∈I∖{j}

∣zi∣2sei+2⌈αei⌉−2z
sej+⌈αej⌉−1
j

1

ej
z
sej+⌈αej⌉
j ∂0η

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

=∫
X
−(s + ⌈αej⌉

ej
)∏
i∈I

∣zi∣2sei+2⌈αei⌉−2η
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

= − (s + ⌈αej⌉
ej

) ε(n + 2)
(2π

√
−1)n+1 ∫X ∣t∣2sη dt

t
∧ ζα ∧

dt

t
∧ ζα.

= − (s + ⌈αej⌉
ej

)F (s, ζα ⊗ 1, ζα ⊗ 1, η).

(8.46)

The other equality in (3) holds similarly. We complete the proof of the lemma. �

Returning to the proof of theorem. Since Mα is locally represented by

ζα ⊗DX/(tα,D1 + α1,D2 + α2, . . . ,Dn + αn)DX

(see the proof of Theorem 7.2), and (2) and (3) in the lemma say that when one of m1 and m2 is in

ζα ⊗ (tα,D1 + α1,D2 + α2, . . . ,Dn + αn)DX

then F (s) is holomorphic since αi equals ⌈αei⌉/ei − ⌈αe0⌉/e0 for 1 ≤ i ≤ k and equals zero otherwise. �

For two sections γ1, γ2 ∈ H0(U,M) and any test function η over U , we define the pairing Sα ∶ Mα ⊗CMα → CX
by

⟨Sα(γ1, γ2), η⟩ = Ress=−α∑
λ

F (s, γ̃1, γ̃2, ρλη),

where {ρλ} is a partition of unity with respect to an open covering by local charts {Uλ} such that γi has a local
lifting of γ̃i over Uλ for i = 1,2. It is obvious that Sα is DX,X -linear. Thus, it is a sesquilinear pairing. As a corollary

of Lemma 8.8, we have

Corollary 8.9. We have Sα ○ (id ⊗C Rα) = Sα ○ (Rα ⊗C id ).

Because of the corollary, the sesquilinear pairing Sα induces pairings on the associated graded quotient of the
weight filtration

Sα ∶ grWk Mα ⊗C grW
−kMα → CX ,

as well as on the primitive part

PRαSr = Sα ○ (id ⊗C R
r
α) ∶ Pα,r ⊗C Pα,r → CX .

Theorem 8.10. The isomorphism φα,r ∶ (Pα,r, F●Pα,r) → Vα,r(−r) in Theorem 7.13 respects the sesquilinear pairings
up to a constant scalar. More concretely,

PRαSr(m1,m2) = ⊕
J⊂Iα,

#J=r+1

(−1)r
(r + 1)!CJ

τJ+ Sα,J(φα,rm1, φα,rm2)
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for any local sections m1,m2 ∈ Pα,r and CJ = ∏j∈J ej, where the pairing Sα,J ∶ Vα,J⊗CVα,J → CY J is defined in (8.45).

Proof. Because of the linearity and the generators of Pα,r are all monomials dividing tα of degree µ−r Corollary 7.7,
it suffices to prove the theorem in the case when mi is represented by

ζα ⊗ zKi = z
⌈αe⌉
I

dz1

z1
∧⋯ ∧ dzk

zk
∧⋯ ∧ dzn ⊗ zKi

where Ki ⊂ Iα with #Ki = µ − r and i = 1,2. Let η be a test function over U . Then we have

⟨Sα(m1,R
r
αm2), η⟩ = Ress=−α(−(s + α))r ∫

X
∣zI ∣2se+2⌈αe⌉−2⋅1zK1zK2

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi).

If m1 ≠m2, then the above is zero. Indeed, for v ∈K2 ∖K1 by choosing Rrα = 1⊗∏i∈I∖K1∖{v}
1
ei
zi∂i,

⟨S(Rrαm1,m2), η⟩ = Ress=−α ∫
X

∣zI ∣2se−2⋅1∣zI ∣2⌈αe⌉
tα
zv
zv η̃

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

where η̃ = C−1
I∖K1∖{v}

∂I∖K1∖{v}zK2(zv)
−1
η is a smooth function with compact support. The function

∫
X

∣zI ∣2se−2⋅1∣zI ∣2⌈αe⌉
tα
zv
zv η̃

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

is holomorphic at s = −α because by setting s = −α the form

∣zI ∣−2αe−2⋅1∣zI ∣2⌈αe⌉
tα
zv
zv η̃

n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi) = ∣zI∖Iα ∣−2{αe} 1

tα

zv
zv
η̃
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

is integrable.

Therefore, we reduce the proof to the case when m1 =m2 =m represented by ζα ⊗ zK . We shall prove that

Sα(m,Rrαm) = (−1)r
(r + 1)!CK

τK+ Sα,K(φα,rm,φα,rm),

where K is the complement of K in Iα. Without loss of generality, we can assume that K = {r + 1, r + 2, ..., µ} and

K = {0,1, ..., r} so that zK = zr+1zr+2⋯zµ. We have

(8.47) ⟨S(m,Rrαm), η⟩ = Ress=−α(−(s + α))r ∫
X

∣zK ∣2(s+α)eK ∣zI∖K ∣2seI∖K+2⌈αeI∖K⌉−2η
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi),

where, for any index subset J ⊂ I, the j-th component the multi-index eJ is ej if j ∈ J or zero otherwise, and the
j-th component of ⌈αeJ⌉ is ⌈αej⌉ if j ∈ J or zero otherwise. Integration by parts for {dzi, dz̄i}i∈K , the identity (8.47)
equals to

Ress=−α(−(s + α))r ∫
X

∣zIα ∣2(s+α)eIα
C2
K
(s + α)2r+2

∣zI∖Iα ∣2seI∖Iα+2⌈αeI∖Iα ⌉−2 (∂K∂Kη)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)(8.48)

=Ress=−α
(−1)r

C2
K
(s + α)r+2 ∫X ∣t∣2(s+α) ∏

j∈I∖Iα

∣zj ∣−2{αej} (∂K∂Kη)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi),(8.49)

where ∂K∂K = ∏j∈K ∂j∂j . Because of the expansion

∣t∣2(s+α) = exp (log ∣t∣2 (s + α)) =
∞

∑
`=0

(log ∣t∣2)` (s + α)`

`!
,
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we find that (8.49) is equal to

(8.50)
(−1)r

C2
K
(r + 1)! ∫X

(log ∣t∣2)r+1
∏

j∈I∖Iα

∣zj ∣−2{αej} (∂K∂Kη)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

The expansion of (log ∣t∣2)r+1
is a linear combination of

∏
i∈I

(log ∣zi∣2)
ai

for all partitions ∑i∈I ai = r + 1, but the differential form

∏
i∈I

(log ∣zi∣2)
ai ∏
j∈I∖Iα

∣zj ∣−2{αej} (∂K∂Kη)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi)

is exact unless ai ≠ 0 for any i ∈K, which is equivalent to ai = 1 for i ∈K and ai = 0 for i ∉K. It follows that (8.50)
is equal to

(−1)r
CK(r + 1)! ∫X ∏

j∈K

log ∣zj ∣2 ∏
j∈I∖Iα

∣zj ∣−2{αej} (∂K∂Kη)
n

⋀
i=0

(
√
−1

2π
dzi ∧ dzi).

We deduce from Poincáre-Lelong equation [GH14, Page 388] that the above continues to equal to

(8.51)
(−1)r

(r + 1)!CK
∫
Y K

∏
j∈I∖Iα

∣zj ∣−2{αej}η
n

⋀
i=r+1

(
√
−1

2π
dzi ∧ dzi)

Since φα,Km = ±dzI∖K
zI∖K

∧ dzk+1 ∧⋯ ∧ dzn ⊗ sα,K ∈ ω
Y K

(Eα,K) ⊗ Vα,K , it follows that

(φα,Km ∧ φα,Km)h = ∏
j∈I∖Iα

∣zj ∣−2{αej}
n

⋀
i=r+1

(
√
−1

2π
dzi ∧ dzi)

from which we conclude that (8.51) is equal to

(−1)r
(r + 1)!CK

∫
Y K

η(φα,Km ∧ φα,Km)h =
(−1)r

(r + 1)!CK
⟨Sα,K(φα,Km,φα,Km), η⟩.

See (8.45). The theorem is proved. �

8.3. Construction of the limiting mixed Hodge structure. We begin to construct a polarized bigraded Hodge-
Lefschetz structure on grWH●(X,DRXMα). Fix a Kähler class ω on X and let L = ω∧ ∶ DRXMα → DRXMα[2] be

the Lefschetz operator and X1 = 2π
√
−1L. Relabel the graded pieces of the first page of the weight spectral sequence

by

V α`,k =H`(X,grWk DRXMα) =
W
E−k,`+k

1 .

Let V α = ⊕`,k∈Z V
α
`,k with the filtration F●V

α induced by F●Mα. Denote by Ei(Rα) the induced operator by Rα on
WEi and let Y2 = E1(Rα). Denote by S`,k the induced pairing on V α`,k ⊗ V α−`,−k
H`(X,grWk DRXMα) ⊗H−`(X,grW

−kDRXMα) →H0(X,DRX,XgrWk Mα ⊗C grW
−kMα) →H0

c (X,DRX,XCX) ≃ C,

modifying by a sign factor ε(`). Let d1 be the differential of the first page of the spectral sequence. In terms of
relabeling we have

d1 ∶ (V α`,k, F●V α`,k) → (V α`+1,k−1, F●V
α
`+1,k−1).

Exactly same to Theorem 6.6 and Corollary 6.7 in the reduced case, we conclude that
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Theorem 8.11. The tuple (V α,X1,Y2, F●V,⊕Sj,k, d1) gives a differential polarized bigraded Hodge-Lefschetz struc-
ture of central weight n.

Corollary 8.12. We have the following

(1) Hodge spectral sequence degenerates at FE1;

(2) the weight spectral sequence degenerates at WE2;
(3) the tuple (⊕`∈Z grWH`(X,DRXMα),X1,Y2, F●) together with the pairing induced by Sα is a polarized bi-

gradged Hodge-Lefschetz structure of central weight n.

The last statement in the above corollary implies that the induced weight filtration on H`(X,DRXMα) is the
monodromy filtration associated to Rα on H`(X,DRXMα). We established Theorem A.

9. Application

9.1. Hard Lefschetz. The following is a consequence of the bigraded Hodge-Lefschetz structure

Theorem 9.1. The Lefschetz operator induces an isomorphism between O∆-modules

(2π
√
−1L)

k
∶ F`R−kΩ●+n

X/∆(logY ) ≃ F`−kRkΩ●+n
X/∆(logY ) for any integer `.

As a result, we have the following decomposition in the derived category of coherent O∆-modules:

Rf∗F`Ω
●+n
X/∆(logY ) ≃ ⊕

k∈Z
F`R

kf∗Ω●+n
X/∆(logY )[−k] for any integer `.

Proof. The first statement follows from the Hard Lefschetz on each fiber

(2π
√
−1L)

k
∶ F`R−kΩ●+n

X/∆(logY ) ⊗C(p) ≃ F`−kRkΩ●+n
X/∆(logY ) ⊗C(p),

for every p ∈ ∆. The second statement follows from the first one plus the main theorem in [Del68]. �

9.2. Invariant cycle theorem. Now we shall give the proof of Theorem B, which is equivalently to the following
statement:

Theorem 9.2. We have the following exact sequence of mixed Hodge structures

H`(Y,C) H`(X,DRXM) H`(X,DRXM)(−1).R

Of course one can try to show that kerR is the filtered DX -module such that the hypercohomologies of its de
Rham complex computes the cohomologies of Y . But we would like to keep the proof elementary so we will just show
that the first page of the weight spectral sequence computing the hypercohomology of DRX kerR is the same to the
one computing the cohomology of Y up to a constant scalar; this will prove the theorem because both weight spectral
sequences degenerate at the second page. See [GS75, (4.2)] or [Ste76, (3.5)] for the weight filtration of H`(Y,C)

Proof. Note that kerR is contained in M0. Therefore, W−jkerR = RjkerRj+1 for j ≥ 0 and vanishes for j < 0 where
W =W (R) on M0. It follows that grW−jkerR is isomorphic to ωỸ (j+1) for j ≥ 0 by Theorem 7.13. Because grW−jkerR

is a summand of grW−jM0 for j ≥ 0 by the Lefschetz decomposition on grWM0, we have the following short exact
sequence of Hodge structures on the first page of the weight spectral sequences:

0 H`+●(X,grW−j−●DRXkerR) H`+●(X,grW−j−●DRXM0) H`+●(X,grW−j−2−●DRXM0)(−1) 0.R
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The associated long exact sequence gives the relation between the second page of the spectral sequences:

⋯ grW−jH
`(X,DRXkerR) grW−jH

`(X,DRXM0) grW−j−2H
`(X,DRXM0)(−1) ⋯.

Now it remains to prove that H`(X,DRXkerR) and H`(Y,C) are isomorphic as mixed Hodge structures. It
suffices to check that they coincide at the first page of weight spectral sequence since they degenerate at the second
page. We have the following commutative diagram where the leftmost column is the E1-page spectral sequence of
kerR and all the horizontal arrows are isomorphisms of mixed Hodge structures.

(9.52)

H`(X,grW−jDRXkerR) H`(X,DRXτ
j+1
+ ωỸ (j+1)) H`(Ỹ (j+1),Ωn−j+●

Ỹ (j+1))

H`+1(X,grW
−(j+1)DRXkerR) H`+1(X,DRXτ

j+2
+ ωỸ (j+2)) H`+1(Ỹ (j+2),Ωn−j+1+●

Ỹ (j+2) )

φ0,r○(R
j
)
−1

d1

≃

≃

≃

We shall identify the the rightmost vertical arrow with the differential of the first page of the weight spectral sequence
of H`(Y,C) via diagram chasing.

grW−j kerR⊗⋀pTX τK+ ωY K ⊗⋀pTX Ωn−j−p
Y K

grW
−(j+1) kerR⊗⋀p−1 TX ⊕ji∈J τ

K∩{ji}
+ ωY K∩{ji} ⊗⋀p−1 TX ⊕ji∈J Ωn−j−p

Y K∩{ji}

[±Rjζ0 ⊗ zIz−1
K ⊗ ∂J] ±dzK̄ ⊗ ∂J dzK̄∖J

[±Rj+1ζ0 ⊗∑ji∈J ejizIzKzji−1 ⊗ ∂J∖{ji}] ⊕ji∈J ±dzK̄ ⊗ ∂J∖{ji} ±∑ji∈J ejidzK̄∖J

≃

d

≃

d

Starting from the upper-right corner, let dzK̄∖J = ⋀i∈K̄∖J dzi be a local section of Ωn−j−p
Y K

where K is an ordered index

set of cardinality j + 1, K̄ is the complement of K in I and J ⊂ K̄ of cardinality p. Then ±dzK̄ ⊗ ∂J is the image in
τK+ ωY K ⊗⋀pTX via the inclusion

Ωn−j−p
Y K

= ωY K ⊗
p

⋀TY K → τK+ ωY K ⊗
p

⋀TX ,

where ∂J = ⋀j∈J ∂j . Its preimage under the isomorphism

φ0,K ○ (Rj)−1 ∶ grWj kerR⊗
p

⋀TX = RjkerRj+1 ⊗
p

⋀TX → P0,−j ⊗
p

⋀TX → τK+ ωY K ⊗
p

⋀TX

is the class represented by ±Rjζ0⊗zIz−1
K ⊗∂J , where ζ0 = dz0

z0
∧ dz1

z1
∧⋯∧ dzk

zk
∧dzk+1 ∧⋯∧dzn and P0,−j is the (−j)th-

primitive part of grWM0. It maps to the class of ±Rj+1ζ0 ⊗ ∑ji∈J ejizI(zKzji)
−1 ⊗ ∂J∖{ji} by the differential of

DRXkerR. By reverse the above procedure, ±Rj+1ζ0∑ji∈J ejizI(zKzji)
−1 ⊗ ∂J∖{ji} corresponds to ±∑ji∈J ejidzK̄∖J

restricting on ⊕ji∈J Ωn−j−i−p
Y K∩{ji} . Therefore, the morphism d1 in the diagram (9.52), up to a scalar factor, can be

identified with the pullback

H` (Ỹ (j+1),Ωn−j+●
Ỹ (j+1)) →H`+1 (Ỹ (j+2),Ωn−j−1+●

Ỹ (j+2) ) ,

which is the differential of the WE1-page of H`(Y,C). This completes the proof. �
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