LIMITS OF HODGE STRUCTURES VIA HOLONOMIC D-MODULES

Qianyu Chen

ABSTRACT. We construct the limiting mixed Hodge structure of a degeneration of compact K&hler manifolds over
the unit disk with a possibly non-reduced normal crossing singular central fiber via holonomic Z-modules, which
generalizes some results of Steenbrink. Our limiting mixed Hodge structure does not carry a Q-structure; instead we
use sesquilinear pairings on Z-modules as a replacement. The associated graded quotient of the weight filtration of
the limiting mixed Hodge structure can be computed by the cohomology of the cyclic coverings of certain intersections
of components of the central fiber.

1. INTRODUCTION

1.1. Limits of Hodge structures. Consider a degeneration of compact Kéhler manifolds f: X — A over the unit
disk A. The cohomology of each smooth fiber carries a polarizable Hodge structure. It is natural to ask how the
family of Hodge structures on the cohomologies of smooth fibers degenerate and how the cohomology of the central
fiber relates to that of nearby fibers. These are two classical and central questions in Hodge theory. Before Saito’s
theory of mixed Hodge modules [Sai88, Sai90], Schmid showed the existence of a limiting mixed Hodge structure
for an abstract polarized variation of Hodge structures over the unit disk [Sch73] using Lie theoretic methods, and
later Cattani, Kapplan and Schmid extend this to polydisks [CKS86]. For the variation of Hodge structures coming
from a semistable family of Kahler manifolds over a 1-dimensional base, the limiting mixed Hodge structure was first
established by Steenbrink [Ste76] whose construction is equivalent to Schmid’s in [Sch73] but purely geometric:

Theorem (Steenbrink). Let f: X — A be a proper holomorphic morphism which is smooth away from the origin,
whose central fiber Y is reduced simple normal crossing. Suppose X is Kdhler of dimension n+ 1. Then the hy-
percohomology H*(X, Q;;r/”A(log Y)ly) of the relative log de Rham complex restricted on'Y admits a limiting mized
Hodge structure with a Q-structure whose graded quotient of the weight filtration can be expressed in terms of the
cohomology of certain intersections of components of Y wvia spectral sequences.

Let us briefly explain Steenbrink’s result. Suppose we are in the setting of the theorem but Y is possibly non-
reduced. Denote by X* = X \Y and A* = A\ {0}. Then the higher direct image of the relative de Rham complex
REf, 3(*"/ A+ is a vector bundle, where the shifting is needed to adopt the convention of the theory of perverse sheaves
and Z-modules; it underlies a polarizable variation of Hodge structure of weight n over the punctured disk A*. Recall
that a polarized variation of Hodge structure of weight n over a complex manifold Z is an integrable connection (V, V)
together with a so-called Hodge filtration by subundles F*V and a flat Hermitian pairing S: V®cV — €5° satisfying
(1) Griffith transversality VEF*V = Q7 ® F*~1V, and (2) each fiber of (V, F*V,S) is a polarized Hodge structure of
weight n. However, the higher direct image of the relative de Rham complex Q;;’/"A does not give anything interesting

when Y is singular. Steenbrink discovered a natural extension of the vector bundle R* f, Q;;’F/ A+ Over the origin via

the relative log de Rham complex. Let
D
Qx/a(logY) = Qx (log ¥)/f*Qa(log) and %, (log¥) = A Qx/a (logY),
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where Qx(logY’) is the sheaf of meromorphic one-forms with log poles along Y. Then the relative log de Rham
complezx is defined to be

Nja(logY) = {0x = Qx/a(logY) » - = Q% s (log V) }[n].

Steenbrink showed in [Ste76] that R” f,Q5% / A(logY) is a locally free integrable logarithmic connection with a pole

along the origin whose residue R has eigenvalues in [0,1) nQ for each k € Z. Tt follows from Grauert’s theorem that
there exists a canonical isomorphism

R .95 A (logY) ® C(p) = H* (X, Q%¢/7 (log Y)|x,)

for every fiber X, over any point p € A, where C(p) denotes the residue field of p. The vector bundle R f, Q% / AlogY)
is Deligne’s canonical extension [Del70] of R* f*Q;;"/ Ax With eigenvalues of the residues of the log connection in the

interval in [0,1). Now we can think of the space H*(X, Q;;’/"A(log Y)|y) as a canonical specialization of H*(X,, Qxr)

for general fibers X,,. In fact, the limiting Hodge filtration is induced by the stupid filtration defined by,
3;/72\(10@ Y)= {QX/A(IOg V)= QX/A(IOg Y)}Hn+4],

for each ¢ € Z. This extends the Hodge filtration F'* ka,,Q;;;”/N for the variation of Hodge structure ka*Q;;l"/A*
which is also induced by the stupid filtration on the complex Q;;ZL/ A+ When Y is reduced, the residue R is nilpo-
tent on the hypercohomology of Q%7 Yh(logY)ly for every k so it gives a monodromy filtration W, = W, (R) on
H*(X, Q;;'/"A(log Y)|y) uniquely characterized by two properies: (1) RW, c¢ W, 5 and (2) R" : gr’¥ — gr"V is an

isomorphism for every r > 0. The filtration W,(R) is called the monodromy filtration because exp (—27r\/—_1R) is
the monodromy induced by the generator of the fundamental group of A*. Steenbrink showed that the monodromy
filtration is the weight filtration of the limiting mixed Hodge structure when f is projective, and this was later
generalized to the Kéhler case by Guillén and Navarro Aznar in [GNA90].

Steenbrink later pointed out the limiting mixed Hodge structure he constructed only depends on the log structure
associated to the semistable family f: X — A [Ste95]. Inspired by the idea in [Ste95], Fujisawa extended Steen-
brink’s results in [Ste76,Ste95] to semistable Kahler families over the polydisk and furthermore to the log geometry
setting [Fuj99,Fujo8, Fujl4]. Recently, Nakkajima announced a simpler proof of Fujisawa’s results [Nak21].

1.2. Main results. We revisit Steenbrink’s theorem and construct the limiting mixed Hodge structure of the de-
generation over the unit disk A with a simple normal crossing central fiber Y which is possibly non-reduced via
the theory of holonomic Z-modules. Although we can run Mumford’s semistable reduction [KKMSD73], which is a
sequence of base changes, normalizations and blow-ups, on every degeneration of Kéahler manifolds over the unit disk
to obtain a semistable degeneration, it is still interesting to remove the assumption that Y is reduced in Steenbrink’s
theorem since the semistable reduction may not be canonical. When Y is non-reduced, the residue is no longer
nilpotent; instead, we need to consider the Jordan-Chevallay decomposition of R. Here is our main theorem:

Theorem A. Let f: X — A be a proper holomorphic morphism which smooth away from the origin, whose central
fiber Y is possibly non-reduced simple normal crossing. Assume that X is Kdhler of dimension n+1. Let R, (resp.
R ) denote the nilpotent (resp. semisimple) part of the Jordan-Chevalley decomposition of the residue operator R on
@ HF (X, /A(log Y)ly). Then each eigenspace of Rs on

EBgr HP (X, Q% (log Y)ly)

underlies a limiting polarized bigraded Hodge-Lefschetz structure over C of central weight n, where Wy = W (R,,) is
the monodromy filtration associated to R,,.



LIMITS OF HODGE STRUCTURES VIA HOLONOMIC D-MODULES 3

A polarized bigraded Hodge-Lefschetz structure is essentially a direct sum of polarized Hodge structures of different
weights preserving by an sls (C)xsly (C)-action. In the setting of Theorem A, the sly (C)xsly(C)-action will be induced
by the operator R,, and 2mv/—1L where L = wA is the Lefschetz operator for a Kihler form w. In particular, each
component gr)¥ H*(X, Q;/"A(log Y)|y) is a Hodge structure of weight n+k+ ¢ and there are two Hard Lefschetz type
isomorphisms of Hodge structures:

o (271'\/—1[,)]g cgr)V HR(X, Q% /A (logY)ly) - gr)V H (X, Q% /A (ogY)|y ) (k) for k>0, € Z;

o R :or)VH*(X, Q%A (logY)ly) - gt H* (X, Q% a(logY)[y ) (=€) for £20,k € Z.

Theorem A implies that each H*(X, Q;;f/"A(log Y)|y) still underlies a limiting mixed Hodge structure of weight n + &
whose weight filtration is given by W, = W,(R,,) when the central fiber is non-reduced. We refer to §2.4 for the
definition of polarized bigraded Hodge-Lefschetz structures. Our argument also says that the limiting mixed Hodge
structure can be computed in terms of the cohomology of certain cyclic coverings of intersections of components of
Y via spectral sequences.

Steenbrink proved, loosely speaking, that Q;;”/"A(log Y)ly is isomorphic to ¢y (Cx[n+1]) in the derived cate-

gory of complex vector spaces D?(X,C) where ¥y denotes the nearby cycles functor, so that the function p +
dim H*(X, Q;/”A(log Y)|x,) is constant on A. Thanks to Grauert’s theorem, the sheaf ka*Q;'/”A(log Y') is locally

free. The log connection on R f, Q;;/"A (logY) is the higher direct image of an operator V € End p»(x ) (Q;;'/”A (log Y)),

which fits in a distinguished triangle in D®(X,C)

F*Qa @ Q% (log V) —— Q" (logY) —— Q57u (logY) — > f*Qa @ QY74 (logV)

if we trivialize f*Qa. The induced operator [V] : Q%A (log Y)ly - Q¥/x(logY)ly has a characteristic polynomial
whose roots are in [0,1) nQ. The action of [V] on the hypercohomology of Q;;;”A(log Y)|y is identical to the residue
operator R of the log connection. So the methods of studying the monodromy filtration of R on the cohomology is
to make the monodromy filtration of [V] on the complex Q;;“/”A(log Y)|y explicit. One of the main difficulties that
we encounter is the construction of the rational monodromy filtration on the complex Q;;r/”A(log Y )|y because the
operator [V] only lives in the derived category. Steenbrink resolves the relative log de Rham complex using a certain
double complex and then he works out the monodromy filtration directly in the case that Y is reduced. He also
needs to show that the monodromy filtrations are defined over QQ, using some complicated topological argument, so
that all the data gives a rational cohomological mixed Hodge complex.

Through the Riemann-Hilbert correspondence [Kas84, Meb84], there should be a regular holonomic Z-module
whose de Rham complex is isomorphic to Q;;”/"A(log Y)|y in D?(X,C) since the nearby cycle functor preserves
perversity [Bei87]. On the Z-module side, we can derive the monodromy filtration easily by local calculations
on a single Z-module which bypasses the derived categories. More importantly, we give a concrete description
of the primitive parts of the associated quotient of the monodromy filtrations. Instead of using Q-structures, we
consider sesugilinear pairings on Z-modules, which play the role of a polarization on a Hodge structure. In fact,
the polarization on the bigraded Hodge-Lefschetz structure in Theorem A will be induced by a sesquilinear pairing.
Although part of the topological data is lost, the sesquilinear pairings that we shall use can be constructed pure
algebraically and only involve symbolic calculations. The local calculation and the sesquilinear pairing justify the
fact that the monodromy filtration of [V] is the correct choice for the weight filtration. Our method also allows us
to construct naturally the limit when Y is non-reduced.
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As an application, we establish the local invariant theorem, which is a piece in the Clemens-Schmid sequence [Cle77],
when Y is non-reduced. The local invariant cycle theorem first was proved by Deligne in an algebraic setting when
the base is a scheme [Del71, Theorem 4.1.1] and later treated in [Ste76], [Cle77] and [GNA9OQ] for a semistable Kéhler
degeneration. It also generalized to mixed Hodge module theory by Saito [Sai88,Sai90].

Theorem B (local invariant cycle theorem). Suppose we are in the same setting as in Theorem A. Then the following
sequence of mized Hodge structures is exact:

HY(Y,C) — H(X, Q%74 (logY)ly) B HY(X, Q¥ /a (log Y)ly)(-1).

In other words, all cohomology classes invariant under the monodromy action comes from the cohomologies of Y .

1.3. Strategy of the construction. Let f : X - A be a proper holomorphic morphism smooth away from the
origin such that the central fiber Y is simple normal crossing but not necessarily reduced. Assume that X is Kahler
of dimension n+1 and Y = ¥ ;.; e;Y; where the Y;’s are smooth components and I a finite index set. We adopt the
convention that if F'* denotes a decreasing filtration then F_, = F'* denotes the corresponding increasing filtration
and vice versa.

We first give a different proof of the local freeness of R* f*Q;(*/"A(log Y) which only uses the fact that [V] has

eigenvalues in [0,1) (Theorem 3.2). Then we translate the data of the relative log de Rham complex to the Z-module
side (see §4):

Theorem C. There exists a filtered holonomic Px-module (M, FeM) whose de Rham complex DRx M with the
induced filtration F,DR x M is isomorphic to Q;;r/"A(log Y)|y with the stupid filtration in the derived category of filtered
complex of C-vector spaces. Moreover, there exists an operator R: (M, FoM) — (M, Fey1. M) whose eigenvalues are
in [0,1) N Q such that DRx R can be identified with [V] via the above isomorphism.

Then we investigate the Jordan block of the operator R. Let My, (resp. Ms,) be the submodule of M spaned
by the generalized eigen-modules ker(R — \)*° for A > a (resp. A > «). Let M, = Mso/M.,. Note that M, is
canonically isomorphic to ker(R—«a)* and therefore R, = R—« acts nilpotently on M. Using an idea of Saito [Sai90],
we filter M, by
FIMaMza + Msa

Mo

The filtration F, M, is different from the naive one FeM nker(R - a)®. The reason why we do not use the naive
filtration is that F, M, not only gives the correct weight but is also easy to work out. We prove that any power of the
operator R, is strict with respect to Fy M,. Namely, for every £ > 0, we have the relation R, FuM,, = Fo,y MNR‘ M.,
(Theorem 5.1 for the case Y is reduced and Theorem 7.5 for the general case). This implies that the monodromy
filtration W, M, and F, M, interacts very well. Note that the monodromy filtration associated to R, is the same
as the one of R,, on M, the nilpotent part of R in Jordan-Chevalley decomposition. We have the induced good
filtrations

F Mg = , forfleZ.

FW, My =FMaW,M, and Fugr¥ M, = F.W, My /FE.W, 1 M,
Denote by Pa.¢ = ker RN grgv./\/la the ¢-th primitive for ¢ > 0, which is isomorphic to
ker R4
ker RY, +im R, nker R&H
We endow it with the induced good filtration FyP, ¢ = im (Fe M N ker Rf;l — Pae). As a corollary of the strictness

of every power of R,, the Lefschetz decomposition of gr'V M,, respects the good filtrations, i.e.
F.grl/v/\/la = P RéF._ngHQg for r > 0.

£0,-%
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See Theorem 5.6 for the case Y is reduced and Theorem 7.8 for the general case. This corollary suggests that it
suffices to study the hypercohomology of each primitive part. The primitive parts will be the source for the pure
polarized Hodge structures.

We will construct a sesquilinear pairing S, : M, ®c M, - €x using the Mellin transformation [Sab02], where M.,
is the naive conjugation of M, and €x is the sheaf of currents. Both M,®c M, and €x canonically carry Zx ®c D+
module structures where %5 denotes the sheaf of anti-holomorphic differential operators and the sesquilinear pairing
is just a morphism of Zx ®c Zx-modules. A good reference is the MHM project [SS] by Sabbah and Schnell.
The sesquilinear pairings on M, is an analogy of a polarization on a Hodge structure: a complex polarized Hodge
structure of weight n can be described as a filtered vector space (V,F*®) with a Hermitian pairing S such that
(-1)"PS is a Hermitian inner product on FP n G™ P where G™? is the S-orthogonal complement of FP*!. The
sesquilinear pairing S, induces the second filtration on the hypercohomology of DRxM,. For example, if Y is
reduced, the pairing on M is induced by

e(n+2) /’ 9 dt dff _

— " — A= Q% A(logY)ec Q% (logY) - Cx,

(2mv/-1)n+1 A‘ | ttJx x/a(logY) @c {0y, (log V) > Cx

where the constant scalar e(n + 2)(2rv/~1)"("*1) depending on the dimension is used to make the pairing independent
of the choice of orientation. The Mellin transformation is used here to extract the principal part of the asymptotic
expansion of fiberwise integration | x, P wx, ®c wx, > €x,. We refer to the §2.1 for the definition of sesquilinear
pairings on Z-module

Ress-g

The operator R, is self-adjoint with respect to the pairing S, : My ®c My = €x, i,e, Sa(—, Ra—) = Sa(Ra—, —).
See §6 for the case that Y is reduced §8 for the general case. This implies we have an induced pairing on the
associated graded modules:

Ser :gr}fVMa ®cC grf‘i/\/la - Cx.
Then Pg_Sa.r = Saro (id ®c R,) defines a sesquilinear pairing on the primitive part Pq ;.
Theorem D. The cohomologies of the de Rham complex of P,
@ H (X, DRxP,.,)
CeZ

together with the filtration induced by FoPqy , and the sesquilinear pairing induced by Pr_ Sy, determine a polarized
Hodge-Lefschetz structure of central weight n +r with sla(C)-action induced by 2n\/-1L.

A polarized Hodge-Lefschetz structure basically is a direct sum of Hodge structures of different weights preserving
by an sly(C)-action modeled by the direct sum of all the cohomologies of a compact Ké&hler manifold. We refer to §2.3
for the definition of polarized Hodge-Lefschetz structures. To illustrate the idea of Theorem D, assume for a moment
that Y is reduced. Then the endomorphism R will be nilpotent and this implies that M = M. Denote by Y7 = N, Y;
for any non-empty subset J of I. Let 77/ : Y7 — X be the closed embedding and 71 : y(r+1) = | r— Y/ - X
be the natural morphism for every r > 0. For simplicity, suppose P, = Py .. We will show that there exists a filtered
isomorphism (Theorem 5.7)

¢7‘ : (’P’M Fopr) - TJSTJrl)w{/(rﬂ) (—7”).
Here, the Tate twist of a filtered Z-module is (N, FoN)(-1) = (N, Foyr N'). Moreover, the isomorphism respects the
pairing PrS, on P, (Theorem 6.5):

-7 s
PRST(_a_) = (E“ + i);’l’i I)SY(T+1)(¢T_’¢T_)’

where S¢(r.1) is the standard pairing on wy (+1y. Therefore, the k-th hypercohomology of the de Rham complex
DRx P, is isomorphic to H" (Y ("*1) C)(-r) as polarized Hodge structures of weight n + 7 + k. Summing all the
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hypercohomologies of DRxP,, we get a polarized Hodge-Lefschetz structure of central weight n + r with sly(C)-
action induced by 27v/=1L. For the case when Y is non-reduced, we will identify the primitive part Pa,r with certain
filtered holonomic Z-modules coming from the cyclic coverings (Theorem 7.13), and the identification also respects
the sesquilinear pairing (Theorem 8.10). As a direct consequence, we obtain

Theorem E. Let V7 = HY(X, grkWDRXMa) be the relabelling of the first page of the weight spectral sequence. Then
V@ = @ ez Vi), s a polarized bigraded Hodge-Lefschetz structure of central weight n with the polarization induced by

Sa and sly(C) x slo(C)-action induced by 2n/-1L and R,,. Moreover, the differential di of the first page of weight
spectral is a differential of polarized bigraded Hodge-Lefschetz structure.

By a formal argument of Guillén and Navarro Aznar [GNA90], which follows some ideas of Deligne and Saito, we
have

Corollary F. We have the following statements:

(1) the Hodge spectral sequence degenerates at PR

(2) the weight spectral sequence degenerates at WE, ;

(8) the a-generalized eigenspace of the bigraded vector space " Eo = D ez gry HE(Y, Q% /a (logY)|y) with respect
to R is a polarized bigradged Hodge-Lefschetz structure of central weight n with polarization induced by S,
and sl (C) x sl (C)-action induced by 2n\/-1L and R,,.

Note that the third statement in the above Corollary is equivalent to the Theorem Aj; therefore, we finish the
proof of Theorem A. See Theorem 6.6 and Corollary 6.7, when Y is reduced. See Theorem 8.11 and Corollary 8.12,
when Y is allowed to be non-reduced,.

1.4. Outline. We first review basic notions on holonomic filtered Z-modules, integrable logarithmic connections
and polarized bigraded Hodge-Lefschetz structures in §2. Then we set up the relative log de Rham complex and
construct a log connection on its higher direct images in §3. We transfer all of the data on the relative log de Rham
complex into a filtered holonomic Z-module in §4. To avoid the messy calculations, we first prove everything in the
reduced case in §5 and §6. The idea for the non-reduced case is almost the same but requires some Hodge theory
of cyclic coverings. We construct some Z-modules in §7.4 as the summand of the primitive part and prove their
hypercohomogies underlies canonical polarized Hodge structures in §8.1. Lastly, we prove the local invariant cycle
theorem in §9.

1.5. Acknowledgement. The author thanks his advisor Christian Schnell for introducing this topic to the author,
and also for sharing ideas and discussing details during our weekly meetings. Many ideas of this paper should be
attributed to him. The author also would like to thank Guodu Chen and Nathan Chen for reading a draft of this
paper and useful discussions and Yilong Zhang for pointing out some typos in the earlier versions of the paper.

2. PRELIMINARIES

2.1. Filtered Z-modules with sesquilinear pairings. We will work with right Z-modules unless further spec-
ified. Let Z be a complex manifold of dimension n and denote by QY the sheaf of holomorphic p-forms and 7z
the sheaf of holomorphic tangent vectors fields. For a filtered Zz-module we mean a pair (N, F,N') where N is
a coherent Zz-module and F,N is a good filtration. Occasionally we will abuse notations and say A also de-
notes the filtered Zz-module if the filtration is clear. Denote by grf' 2, = @cy grf@X the associated graded
algebra and grf' N = @ greF N the associated graded module. Note that gr” A is a coherent grf”?,-module. Let
T*Z = Specgrt’ Zx be the algebraic cotangent bundle and Ty, Z the geometric conormal bundle of a subvariety V/
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in Z. The characteristic variety of N is the support of gr’ N on T*Z and is denoted by char(N). The character-
istic cycle of N is the cycle associated to the coherent sheaf gr’ AV on T7*Z and is denoted by cc(N). Neither the
characteristic variety nor the characteristic cycle depend on the choice of the filtration [HTTO08]. For example, the
canonical bundle wy is naturally a holonomic Zz-module with action

a.f=-d(§1a)
for local sections € € 9 and « € wz. It also naturally has a good filtration
wz, £>-n;
(2.1) Fng = { 0’ l<—n.

Then one can compute cc(wz) = [T5Z] which is the cycle of the zero section of the cotangent bundle. We call N
a holonomic 9z-module if dimchar(N') = n. See more details in [HTT08]. A Tate twist of filtered Zz-module is
defined to be N (-r) = (N, Forr N) for any 7 € Z.

Denote by D?(Z,C) the bounded derived category of complexes with values in finite dimensional C-vector spaces
and D?(Z, 2) the bounded derived category of Zz-modules. Denote by D% (Z, 2) the full subcategory of D(Z, 2)
whose objects are complexes with holonomic cohomologies. For a morphism f: Z - W between complex manifolds,
denote by Rf.,Rfi : D(Z,C) - D(W,C) the derived pushforward and proper pushforward functors respectively
and R*f,, R¥ f, the k-th cohomology functors respectively. For any N'* € D*(Z, 2), the pushforward functor and the
proper pushfoward functor f., f; : D®(Z,2) - D?(W, 2) are by definition, respectively

FN* = REWN® 8 Zz.w) and fiN* = RAN® & Zzw),

where Z7_.w = f*Pw is the transfer module. In fact, the functor f; preserves the holonomicty, i.e., f; : DZ(Z, 2) -~
D! (W, 2) (see [HTT08]). Of course if f is proper or proper on the support of N then f, = fi. The de Rham complex
of N is )

DRZNZdefN®/\yZ = {N@/\yzf\/‘%/\/‘@) /\ Tg — - —>N}
with N is in degree 0. If without further indication, tensor products are always taken over &-modules. Some authors
also call it Spencer complex. The de Rham complex of wy

n-1

wz@/\gzz{wZ(@/\waZ—)wZ@/\yz_)_,,_HUZ}

is isomorphic to the usual de Rham complex DRz0z = Q%*® of Z under the isomorphisms

(22) Wz ® /p\ Ty — ngp’ w®Jdy (—1)n7jl+m+n7jpd2’j,
where 9y is a local section of A? 7, J is ordered index set and J is the complement with the natural ordering, and
w=dz; ANdza A Adzy,. If FLN is a good filtration, the de Rham complex is also filtered:
FgDRzN = F€+.N® 7{ Ty = {FgN@ /”\ yz./\/‘ — Fg+1N® "/_\1 Ty = Fg+n./\/}.
The direct image functor and the de Rham functor are commute : Rfi o DRz = DRy o f; [MS, Corollary 4.4.4].
A sesquilinear pairing S on Zz-module N is a _@Zj—module morphism S : N ®c N — €. Here, @ZZ =970c Y5

for @ is the sheaf antiholomorphic differential operators, N is the stupid conjugate of N as a 2 z-module and € is
the sheaf of currents on Z with natural 2, --module structure. We have the proper pushforward functor similarly
as above on %, —-modules and also call it f;:

L
f1(=) =aet RAI(- 52 Dy 7w )
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where the transfer module 9, _ ;7 =det f* %y, 757 Because of the natural morphism f;€z — €y, we can pushfor-
ward the sesquilinear pairing to get

%OfTSk Z%kff./\/'@c e%ﬂ’kff./\/ - ﬁfofTN®(cN—> Cw.

If f is a closed embedding then f.S: f,N ®c fiN — €. If W is a point, then we have an induced pairing on the
complex

f+S DR, zN ®c N - DR, €7 = C[2n],
where DRZ’gN ®c N = DRzN ®c DRyN. Taking cohomology at O-th degree yields, for each k € Z,
(2.3) HY(Z,DRzN)® H;"(Z,DRzN) -~ H)(Z,DR, zN @c N) -~ H?"(Z,C) = C.

Example 2.1. The Zz-module wy carries a natural pairing Sz : wz ®c wz — €z,

e(n+1) _
24 Sz(m',m"),n) = 7f m' Am/,
(2.4 (et = S [
7 Y74 . . k(k-1) . 5(n+1) . oL
for m',m local sections of wyz, n a test function on Z and (k) = (-1)~ 2z . The coefficient G/ B the definition
e(n+1)

2nV/-1)n
of orenation (see more details in §2.3). The pairing Sz : wz ®c wz — €z yields a collection of pairings

H(Z,DRyzwy) ®c H-*(Z,DRzwz) - C.

is chosen so that m A = |m|? is a positive current for any local section m of wyz and elimination the choice

2.2. Logarithmic connections. If D = } a;D; is a simple normal crossing divisor on Z for a; > 0, denote by
Qz(log D) the sheaf of meromorphic differential 1-forms with logarithmic poles along D,eq = ¥ D; and denote by
07 (log D) = AP Qz(log D) the meromophic p-forms with logarithmic pole along D. Each Q7 (log D) is a locally free
O z-module.

In our convention, the de Rham complex of Z is DRz 0,
Q" = {07 > Uz > QY > > Q% n].
The log de Rham complex is
Q3" (log D) = {0z > Qz(log D) » Q7 (log D) — -+ - Q2 (log D) }[n].
We will follow the Koszul sign rule: for a chain complex C* with differential d, the shifted complex C**" = C*[n]
equipped with differential (-1)"d. We define residue along D; by (see [EV92, 2.5])
dz

)
0), Znama
Zi

Resp, : Q%" (log D) — QgidimD"(log(D -Dy)

D;>
where z; is the local defining equation of D; and ‘ii A« is alocal section of Q23" (log D). It factors through
Q3" (log D)|p, - Q5™ P (log(D - D;)|p,)-

By abuse of notations, we still call the above morphism Resp,. Let D’ = nngDJ and Dy =3 ;c; Dj. Then we have
a collection of residue maps, by choosing an order on the indices and successively applying Resp, for j € J,

Resps : Q5" (log D) - Q'J}iimDJ(log(D -Dp)lps).

A log connection V with poles along D on a coherent &z-module F is a C-linear morphism V : F — Qz(log D)@ F
satisfying the Leibniz rule Vfs = df ® s + fVs for f local section of &7 and s local section of F. One can extend
standardly V to a complex

F Y% Qy(logD)@ F % - % Q% (log D) ® F.



LIMITS OF HODGE STRUCTURES VIA HOLONOMIC D-MODULES 9

If the above is a chain complex, i.e., V2 = 0 we say (F,V) is an integrable log connection. For any integrable log
connection V : F - Qz(log D) ® F, we call the morphism Resp,V : F — F|p, induced by Resp, : Qz(log D) - Op,
its residue along D;. Note that Resp, is €z-linear and factors through again F|p, - F|p,.

An integrable log connection is same as a left Zz(log D)-module, where Zz(log D) is the sub-algebra of 2z
generated locally by the differential operators P such that P-.¢p c .p. Here, we denote by Zp the ideal sheaf
of the normal crossing divisor D. Then we can extend the definition of residues of a log connection as follows.
The sheaf Op, = 07/ 7p, naturally has a left 2 (log D)-module structure because .#p, is also stable under by the
2z (log D)-action by the naive reason. Let F* be a complex of integrable log connections. Then the complex

L
F* ® ﬁD,‘,
Oz

is a complex of Zz(log D)-modules because taking tensor products over &y is closed in the category of Zz(log D)-
modules and one can resolve either F* or Op, using locally 2z(log D)-free resolutions. The ¢-th cohomology
H(F* oL 0p,) is indeed Op,-module equipped with an integrable log connection. The residue of of this log
connection is Op,-linear and is called the the ¢-th residue of the complex F*.

As in the case of Z-module, the sheaf wz(log D) = Q7% (log D) carries a canonical right 7 (log D)-module structure
and we have the left to right transformation F ~ wz(log D) ® F for any left 2z (log D)-module F. Moreover, we
have the following analog

Theorem 2.2. The log de Rham complex of Zz(log D)
{22(log D) - Qz(logD) ® D7(log D) - -+ > Q% (log D) ® Z7(log D)} [n]
is a resolution of wz(log D) as right Dz (log D)-modules. The Spencer complex of Pz (log D)

n n-1
27(log D) ® )\ 7z(log D) » Z7(log D) ® )\ Fz(log D) » -+~ Zz(log D)
is a resolution of Oy as left D (log D)-modules.

For any integrable log connection F, it induces a complex of right Zz-modules,
(2.5) {Fe 27 > Qz(logD)@F @ Dz — - > 0% (logD)® F @ Dz} [n].
In fact, it is nothing but the log de Rham complex of F ® 9z as a left 2z (log D)-module.
Lemma 2.3. The log de Rham complex of F D is a Pz-module resolution of

wz(logD)®F ® Dy.
2z (log D)

Proof. By the above theorem, we have

log D ~ wy(log D log D) ® A Z(log D
wrleD)oF | o Tr=usnD)oF | o (70xD)0 A 70xD))0 72

= wZ(logD) F® /\ yz(lOgD) ® YDy
~Q)"(logD) ® F ® D.
The last isomorphism follows from that the contraction wz(log D) ® A™* 7z (log D) ~ Q%" (log D). O

Example 2.4. We will use the following fact: the complex of right Zz-modules
{-@Z g Qz(IOgD) @YDy — - — Q%(lOgD) ® Qz}[n]
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is a filtered resolution of wz(*D) = Upezwz (kD), equipped the induced filtration by Q7%**(log D) ® Fyin+eZz. In fact,
it is well-known that the inclusion Q7%**(log D) - Q%**(*D) is a filtered quasi-isomorphism [Del71]. The inclusion
extends to a filtered quasi-isomorphism Q7%**(log D) ® 2z — Q%" (D) ® Pz. Since Q4*(+D) ® P is a filtered
resolution of wz(*D), we conclude the proof. It follows that, for f:Z — W,

fiwz(*D) = Rfi(wz(*D) ®%, Pz-w) = RAQY*(log D) ® Dy
In particular, if f is a closed embedding then fi = f, is right exact and f; = 5 f;, which means
{9w — f:Qz(log D) ® Dw — - — f1Q5(log D) ® D }[n]
is a resolution of fiwz(*D). We put the induced filtration to make it a filtered resolution and denote by

fi(wz («D), Fuwz (+D)) = (frwz (+D), F, frwz(+D)),
or for simplicity just fiwz(*D).

The Zz-module looks like L® P for L is a 0z-module is called induced 2z-module. For example, we have seen
Q%im Z+* ® 9, and Q(log D)%im Z+* ® 9, are complexes of induced Zz-modules.

2.3. Polarized Hodge-Lefschetz structures. The goal of this subsection is to introduce polarized bigraded Hodge-
Lefschetz structures. The prototype of polarized Hodge-Lefschetz structures one should keep in mind is the graded
vector space consisting of cohomologies of a compact Kahler manifold. Polarized bigraded Hodge-Lefschetz structures
are the degenerations of polarized Hodge-Lefschetz structures. We begin with the convention on Hodge structures
and we only consider complex Hodge structures.

A Hodge structure of weight n is a finite dimensional vector space V' with two decreasing filtrations F'* and G*

satisfying
V=FeG!?,
for each p e Z. Let VP9 = FP nGY for p+ q =n. Then the above definition is equivalent to
V=& vhi
p+g=n

A morphism of Hodge structures is just a morphism of vector spaces such that it preserves the two filtrations. A
polarization on the Hodge structure (V, F*,G*) is a non-degenerated hermitian pairing S: V ®c V — C such that

(1) FP? is orthogonal to G™™1? with respect to S for every p € Z;
(2) (-1)25(-,-) is hermitian inner product on V4.

Remark 2.5. A polarized Hodge structure of weight n is completely determined by the triple (V, F,V, S) because
G"1 PV ={a eV :5(a,b) =0 for all b in FPV} = FPV1s,
We will also call the triple (V, F,V,S) a polarized Hodge structure.

Remark 2.6. A Tate twist (V, F*,S)(r) on a polarized Hodge structure (V, F*,S) is the triple (V, F**",(-1)"S),
for any integer 7.

Now let us move on to the geometric case. It is well-known that the k-th cohomology group of a compact Kahler
manifold Z has Hodge decomposition
H*(z2,C)= @ H"(2)
p+q=k
and thus it is a Hodge structure of weight k. Fix a choice of v/=1. Let Z be a compact Kihler manifold of dimension
n, and let h be any Kihler metric on Z. We denote the Kihler form by w = -Imh € A?(Z,R) and denote its
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cohomology class by [w] € H?(Z,R); note that this depends on the choice of /-1 through the function Im: C - R.
The choice of /-1 endows the two-dimensional real vector space C with an orientation on Z. The induced orientation
on Z has the property that

fZ ":7 = vol(Z) > 0.

The integral also depends on the orientation, hence on the choice of \/—1. To remove the dependence, instead of the

usual integral, we should use
1

(2mv/-1)»
1 2V -1w)™
f (2m w) =vol(Z).
2rv-1) Jz n!
Let L = [w]A be the Lefschetz operator for a Kéhler class [w]. Then for k < dim Z the primitive part
P H*(Z,C) =get ker L™ 7% 0 H* (X, C)

fZ . A?"(Z,C) - C.

Of course we still have

is a polarized Hodge structure of weight k& with the polarization

_e(n-k+1) e -
S(CLb) = mv/;(2ﬂ'\/—_1lz) ka/\b7

for a,b € PLH"*(Z,C) because of the Hodge-Riemman bilinear relation.

If we consider the cohomology groups all together, we will get the Hodge-Lefschetz strcuture of central weight n.
Denote by (X,Y,H) the sly(C)-triple, i.e.,
[X,Y]=H, [H,X] =2X, [H,Y] =-2Y.
In the Lie group SLy(C), we have the Weil element w = eXe~YeX
adjoint action of SLs(C) on its Lie algebra, one has the identities

wHw™? = -H, wXw?l=-Y, wYw!=-X

From this, one deduces that X = we™eY = eYwe". Now A®(Z) becomes a representation of sly(C) if we set

X=2mv/-1L and Y =(2rV-1)"'A

and let H act as multiplication by & —n on the subspace A¥(Z). The reason for this (non-standard) definition is
that it makes the representation not depend on the choice of v/-1. It is easy to see how w acts on primitive forms.
Suppose that a € A" *¥(Z) satisfies Ya = 0. Then wa € A" (Z). If we now expand both sides of the identity

exa = €YW6YOé = GYWOé

with the property that w™! = —w, and under the

into power series, and then compare terms in degree n + k, we get
xk
wa = —a.
k!

This formula is the reason for using w (instead of the otherwise w™'): there is no sign on the right-hand side.

A Hodge-Lefschetz structure is linear algebra data encoding both representation theoretic and Hodge theoretic
information. Recall that a finite dimensional sly(C)-representation is a graded vector space V = @z Vo satistying
the following three equivalent conditions.

(1) each graded piece V; is the f-eigenspace of H;
(2) the morphism X : V., — V is an isomorphism for each ¢ > 0;
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(3) the morphism Y*:V; - V; is an isomorphism for each £ > 0.

Example 2.7. For any finite dimensional vector space V together with a nilpotent operator N, there exists a
so-called monodromy filtration W, uniquely determined by the following two conditions

e foreach feZ, N : Wy, - Wy_o;
e the induced operator N*: grgv - gr% is an isomorphism for each £ > 0.

Let gt = @z ngV. The ¢-th primitive part PNngV =ker N1 n grgv consists of the classes of generators of cyclic
subspaces of V of dimension ¢ as C[N]-modules for £ > 0. For each generator v, we have N**v = 0 but Nv # 0 and
also v is not a image of N. Therefore, we have the identification

B ker N¢+!
~ ker N’ +im N nker N¢+1°
Furthermore, we have the Lefschetz decomposition grgv = @0 N¥PyViior. Taking N =Y, the Lefschetz structure

and the grading uniquely determines the operator X such that (X,Y,H) is a sly(C)-triple by the relation XY* =
k(¢ -k+1)Y*! on Pygr)V. Thus gr' naturally is a representation of sly(C).

Py ngV

By Hard Lefschetz theorem, for any compact Kéhler manifold the vector space @z HY™Z*¢(Z,C) is a represen-
tation of sly(C) by setting X = 2mv/~1L the Lefschetz operator, Y = (2mv/~1)"'A the adjoint operator. But because
of the Lefschetz operator of is of type (1,1), we actually have X : H*(Z,C) - H**1(Z,C)(1) is a morphism of Hodge
structures and X¢ : H4mZ=4(7 C) - HYImZ+{(7 C)(¢) is an isomorphism of Hodge structures. This leads to the
following definition: a Hodge-Lefschetz structure of central weight n is a sly(C)-representation V' = @z Vp with two
filtrations F'*V and G*V such that

(1) each graded piece (Vp, F*Vy, G*V;) is a Hodge structure of weight n + ¢;
(2) the operator X : (V, F*Vy, G*Vy) = (Viya, F**1Viia,, G**1V;,5) is a morphism of Hodge structures such that

XE: (Voo F*Vog, G*Vog) = (Vi, F*Ve, G*V) (£)
is an isomorphism of Hodge structures;
(3) the operator Y : (Vy, F*Vy, G*Vy) — (Vi_a, F*1V, 5, G*71V;_5) is a morphism of Hodge structures such that
YO (Vi Vi, G*Vi) = (Vog, F* Vg, G*Vog) (<)
is an isomorphism of Hodge structures.
It follows from the definition the primitive part PxV} is a sub-Hodge structure for each £ < 0. Let V, = H4™Z+( 7 C)
and V = @z V. It follows that V is a Hodge-Lefschetz structure of central weight dim Z. Hodge-Lefschetz structure

interplays well with the Hodge-Riemann bilinear relation. A polarization on a Hodge-Lefschetz structure V' of central
weight n is a hermitian symmetric paring S : V ®c V — C such that

(1) the restriction S|y, 77 is zero for £+ k # 0;

(2) S(X-,-)=8(-,X-) and S(-,Y-)=S(Y-,-);

(3) S_¢(Xf~,-) is a polarization on PxV_,, or equivalently, Sy o (id ® w) is a polarization on V, where S :
V; ® V_; - C is the restriction of S.

Note that w: Vi - V_r(-k) is automatically an isomorphism of Hodge structures (of weight n + k). We first prove
an auxiliary formula. Suppose that a € V., is primitive, in the sense that X‘*'a = 0( and ¢ > 0). Then Ya = 0, and

from we™ = eXe™Y, we get weXa = eXa, and after expanding and comparing terms in degree £ — 2j, also
XJ . Xt

(26) W—-a = (—1)]7.(1
7! (€=t
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)—£+2j

since w? acts on V_gi9; as (-1 = (-1)*, this formula is actually symmetric in j and £ - j,.

Lemma 2.8. If V is a Hodge-Lefschetz structure, then w:Vy, - V_r(=k) is an isomorphism of Hodge structures.

Proof. Any a € Vi, has a unique Lefschetz decomposition

X7

a = 7'(1]

j2max(k,0) J:
where a; € Vi_o; satisfies Ya; = 0. (We only need to consider j > k in the sum because X2j’k+1aj =0, which implies
that X7a; = 0 for j <k.) Suppose further that a € Vkp’_q, where p+ ¢ =n+k. Then X'a; € VP4 and by descending
induction on j > max(k,0), we deduce that a; € V,f_}jj’.qﬁ . In other words, the Lefschetz decomposition holds in the
category of Hodge structures.

We can now check what happens when we apply w. Using (2.6), we find that

X7 . XITR kg
wa = Z w—'aj = Z (—1)‘]70/]' € ka koa-k

j>max(k,0) J: j>max(k,0) (] = k‘)'

and so w is a morphism of Hodge structures. The same calculation shows that w™! is also a morphism of Hodge
structures. It follows that w is an isomorphism of Hodge structures. O

The definition of polarized Hodge-Lefschetz structure of central weight n is redundant. In fact the definition is
equivalent to a tuple (V,X, F*,8) for V = @z Vi, F* is a decreasing filtration, X : (Vz, F*) = (Viyo, F*™), and S is
a Hermitian pairing such that

(pHL1) for each £ >0, X*: F*V_; - F***V} is an isomorphism;

(pHL2) S(X-,-) = S(-,X-) and S|y, o 7 vanishes except for k = —¢;

(pHL3) the triple (Pij,F., So (XJ oid )) is a porlarized Hodge structure of weight n — j.

The condition (pHL1) in the above definition indicates the Lefschetz decomposition respects the filtration F*°.
Therefore Y is determined uniquely and also filtered. The second condition implies that S(Y-,-) = S(-,Y-). The
third condition says that So(id ®w) is non-degenerate on FPV,® FPV_,. Therefore, we also get the following concrete
description of the Hodge structure on Vy: for p+g=n+/¢

VP9 ={ae FPV;:Sp(a,b) =0 for all be FP1V_,},

G, = {aeV;,Se(a,b) =0 for all be F"" 9"V ,}.

Example 2.9. For a compact Kihler manifold Z of dimension n, let V; = H"*(Z,C) and V = @z Vi. Then V
together with X = 27v/=1L and Y = (27v/~1)"'A and with the natural filtration is a Hodge-Lefschetz structure of
central weight n. By Hodge-Riemann bilinear relation, taking

e(n+l+1) - m €(n+1)
2.7 Se(a,b)=————= [ anb=ec(l)(-1)"———
2.7 wan) = [anb=eOn S
for a € V; and b € V_, gives a polarization on V. The polarized Hodge-Lefschetz structure V is determined by the
filtered Zz-module wz together with the sesquilinear pairing Sz. The graded piece V; is just ¢-th hypercohomology
of DRzwz with induced filtration F*V; given by the image of He(Z7 F_.DRzwyz). And the polarization Sy is given
by (k) times the pairing

anb

H*(Z,DRzwz) ® H*(Z,DRywz) —— H(Z,DR, zwz ®c Wz) Sz, H°(Z,DR,5€z)~C
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We can work out the pairing explicitly. Note that we have a commutative diagram

DR, ywz ®cwz; — DR, 707 &c Oy

Is e
DR, €7z —— DR, Dby

where the upper horizontal arrow is the isomorphism induced by (2.2) and similarly the lower horizontal arrow is
defined on the terms in degree —k,

k
(7 ®6’Z’Z /\ 92,2 — Q?ék ®6’Z,Z Dby

by the following rule: write a current locally as Dw A w, with a distribution D and denote by 9y = A;0; and
dx 7 = N\;¢ydz; for an ordered index subset J of I; then

(2.8) (Dw A@) ® 8y A > (=1)0rtrip)t(Rattka) (1) y o A e @ D

where #J = p and #K = q, and p + ¢ = k. The sign factor is explained by the number of swaps that are needed to
move everything into the right place, which is (2n—j1) +-+ (2n—-j,) + (n— k1) +--- + (n - k;). We can now derive
a formula for the induced pairing

(2.9) DRz 0Oz ®c¢ DRzﬁZ%DRZ,Z:‘Dbz.

For the two local sections a = dz ;7 and 3 = dx g, under the isomorphism DRz 07 2 DRzwyz in (2.2), the (n — p)-form
« goes to

(-1)"P(=1)"* " w @ 9.
and the (n - ¢q)-form f goes to
(-1)™(=1)F+ ey @ O
The pairing Sz on DRzwz takes those two sections to
(2.10) (-1)PHa) ()Gt karka) Gy ) @ 95 A D
where Sz is defined in (2.4). Now Sz(w,w) = Dzw A&, where D is the distribution
D, - e(n+1)
2nv-1)" Jz
Under the isomorphism in (2.8) the section (2.10) therefore goes to
(-1)"da;Adzg ® Dy = (-1)"48 oA o Dy

The formula we have just derived also works for smooth forms, of course. In other words, the same formula can be
used to extend (2.9) to a pairing on the de Rham complex of smooth forms. The resulting pairings on cohomology
are, assuming Z is compact

e(n+1)

n+k T_) — (— n(deg a—n)
(2.11) H" (Z,C) 0 HHZ,C) > C,  (a,8) = (1) o e

A B,

which coincides with the pairing (2.7) precisely.
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2.4. Polarized bigraded Hodge-Lefschetz structures. In the paper, what we really consider is the degeneration
of “variation of Hodge-Lefschetz structures” of a family of compact Kahler manifolds. As it turns out the limit of
the degeneration is a bigraded Hodge-Lefschetz structure. We begin to define polarized bigraded Hodge-Lefschetz
structures. Similarly to the case of sly(C)-representation, a sl (C) x sly(C)-representation is a bigraded vector space
V' = @y kez Vo1, satisfying the following three equivalent conditions:

(1) each bigraded piece V¢, is the £-th eigenspace of Hy and k-th eigenspace of Ha;

(2) for each £,k € Z we have Xy : Vpp = Viso, and Xg : Vi = Vi 42 plus isomorphisms
X{ Vi = Vi and X5 : Vo g — Vi

(3) for each ¢,k € Z we have Y1 : Vi, - Vi_a, and Yo : Vi = Vi p—2 plus the isomorphism
Y0 Vi = Vo and Y5 : Vog > Vi .

A bigraded Hodge-Lefschetz structure of central weight n is a sly(C) x sly(C)-representation V' = @y ez Vo1 with
two filtrations F'*V and G*V such that

(1) the bifiltered vector space (Vi i, F*Vir, G*Vi ) is a Hodge structure of weight n + ¢ + k;
(2) the two operators Xy : (Voi,, F'*,G*) - (Veso g, PG and Xo 0 (Vor, F*,G®) > (Vigso, F*™1, G are
morphisms of Hodge structures such that
e (Ve e, F*,G*) > (Voi,, F*,G*)(£) and XS Voo, F*,G*) > (Voi,, F*,G*) (k)
are isomorphisms of Hodge structures.
(3) the two operators Yy : (Vo g, F*,G*) > (Vieo, F*1,G*™) and Yo : (Voi, F*,G*) > (Vp o, F*71,G*7) are
morphisms of Hodge structures such that
Yf c(Veg, F*,G*) = (Vg i, F*,G*)(—¢) and YIQC t(Vew,F*,G*) = (Vi—i, F*,G*)(-k)
are isomorphisms of Hodge structures.

A polarization on a bigraded Hodge-Lefschetz structure V' = @y yez Vi1 of central weight n is a hermitian symmetric
pairing S: V ®c V — C such that

(1) the restriction S|w,k®cm :Vik ®c WJ — C vanishies except for £ = —i and k = —j;

(2) S(X1—-,-) =5(-,X1-) and S(-,Y3-) =S(Ya—,-);

(3) ngk(Xf—, (=Y32)*-) is a polarization on the bi-primitive part P_y ) =ker Xf*l nker Y&+1 NV_¢ k, or equivalently,
Se i (—,wiwy—) is a polarization on Vp i, where Sy i is the restriction of S on V;;, ® V_y and w; = eXiemYiks
fori=1,2.

ie

This is the practical definition because in the later application X; will be the 27v/-1L and Y, will be, up to a
scalar, the logarithmic of the monodromy for the degeneration. Similiarly to the case of Hodge-Lefschetz structure,
we have a simpler definition.

Theorem 2.10. A polarized bigraded Hodge-Lefschetz structure of central weight n on a filtered bigraded vector space
(V =@k Vi, F*V) is uniquely determined by the following:

(pbHL1) for every £,k € Z we have two operators Xy : (Vo i, F*) — (w+27k,F.+1) and Yo : (Vo F*) > (Vg,;f_g,Fhl)
such that

x{ CFV g~ F'MV@Jc and Y5 PV —~ F'_ng,_k are isomorphisms;
(pbHL2) a collection of Hermitian pairings S : Ver ®c Vog¢,—r, > C such that
Se(X1=,-) = Serax (= X1=)  and  Sgr(=,Y2-) = Sep-2(Yo—,-);
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(pbHL3) the triple (P_g,k,F.P_gyk,SO (Xf ® (—Yg)k)) is a polarized Hodge structure of weight n — £ + k where
F*P_y ) =ker X‘i N ker Y§ NEF*V_ 1 is the bi-primtive part.
Then the Hodge structure on Vjj can be described as: forp+q=n+j+k
VI ={ae FPV;:S;(a,b) =0 for all be Froickely o
GV ={aeV;y:S;r(a,b) =0 for allbe F"" 7V ;1.

The proof is simple and is left to the reader. Later when we construct the limiting mixed Hodge structure, the
polarized bigraded Hodge-Lefschetz structure naturally comes up from the first page of weight spectral sequence
associated to a mixed Hodge complex. Modeled on the properties of the differential of spectral sequence we give the
following definition:

A differential of a polarized bigraded Hodge Lefschetz structure (V, F*,X1,Y5,S) is a linear map d: V — V such
that
(1) d: (Vjg, F*) > (Vjs1,5-1, F*) and d* =
(2) d is skew-symmetrc with respect to S, i.e., S(d—,-) +S(-,d-) =0;
(3) [Xl,d] =0 and [Yg,d] =0.
Remark 2.11. In fact, the above three conditions imply that d is a morphism of Hodge structures d : V]p ,’Cq -

Vi 1. A vector a € GV means that S(a,b) =0 for all b€ Fr=a1y_. . Then S(da,b) = S(a,db) = 0 for all

be F™~ q“V,j,L,;Hh indicating da belongs to G9Vj.1 j-1.

The main result of this subsection is the following version of Deligne’s lemma, showed by Guillén and Navarro
Aznar.

Theorem 2.12 ( [GNA9O, (4.5)]). The cohomology kerd/imd of a polarized differential bigraded Hodge-Lefschetz
struture is again a polarized bigraded Hodge-Lefschetz structure.

Proof. Let C': V - V be the operator that acts as (-1)? on the subspace Vp % in the Hodge decomposition of each
Vj k. Since d is a morphism of Hodge structures, we have [d,C] = 0. The fact that S is a polarization means that the
Hermitian pairing
h*:VecV —>C, h*(a,b)=S5(Ca,wiwab)
is positive-definite on V. Let d* be the adjoint of d with respect to h™. Fix a €V}, and be V;
h*(da,b) = S (Cda,wiwzb) = S (dCa,wiwsyd)

=-S5 (Ca,dwiwab) = =S (CG,W1W2 wy twitdwiws - b) =h* (a,d*b),

i.e. the adjoint d* = —wz wy dwiws.
In addition to the two relations in the definition of differential
[Xl,d] =0 and [Yg,d] =0
we obtain from the grading another two relations
[Hi,d]=d and [Hs,d]=-d.
With respect to the sl (C) x sl5(C)-action on Endc(V'), the element d therefore has weight (+1,-1), and is primitive
with respect to the action by Y; and Xs. Define
d1 = [Yl7 d] and d2 = - [XQ7 d] .
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The reason for the minus sign is that we have [Yo,d] = 0. Then d; has weight (-1,-1), and is primitive with respect
to the action by X; and Xs; this gives

[Hi,d1] =~di, [Xi,d1]=d, [Y1,d1]=0, widiwi' =d
[Hg,dl] =—dy, [Yg,dl] =0.

Similarly, ds has weight (+1,+1), and therefore

[Ha,do] = do, [Xo,d2]=0, [Yo,d2]=-d, wadow3!=d
[Hi,d2] =d2, [X1,d2]=0.

Therefore, d* = —=[Y1,dz2] = [X2,d1] € Endc V. It has weight (-1,+1), and is primitive with respect to X; and Y.
From this, and the identities we already have, we deduce the following set of relations:

[Hi,d*]=-d*, [Xy,d*]=dy, [Y1,d*]=0, wid*wi'=-d,
[Ho,d*]=d*, [Xo,d*]=0, [Yo,d*]=~d1, wad*wy'=~d;.

We can check that the (formal) Laplace operator
A =dd* +d*d € Ende(V)
is invariant under the action of sl (C) x sl3(C). For example,

[X1,dd*] = Xydd* — dd*Xy = dXyd* - d (Xyd* + da) = —dds
[X1,d*d] = Xyd*d - d*dXy = (d*Xy — dy) d — d*Xyd = —dad

from which we conclude, using d? = 0, that
[Xl, A] = - (ddg + de) = —(d (dX2 - ng) + (dXQ - X2d) d) =0

The other three commutators can be checked similarly. On the other hand, A is also a morphism of Hodge structures:
the reason is that
d:Vik = Vistg-1, Y1:Vig = Viap(-1), Xo: Vg = Vjga(l)

are all morphisms of Hodge structures, and A is obtained by composing them in some order. It follows that ker A ¢ V'
is a bigraded Hodge-Lefschetz structure, polarized by the restriction of S. Because of the canonical isomorphism
ker A ~ ker d/im d as bigraded Hodge-Lefschetz structures, the induced pairing by S on ker d/im d is also a polarization.
This concludes the proof. O

3. LOG RELATIVE DE RHAM COMPLEX

Let f: X — A be a proper holomorphic morphism smooth away from the origin whose central fiber Y is simple
normal crossing but not necessarily reduced. Assume X is Kéhler of dimension n+1 and Y = ¥ ,.; e;Y; where Y;’s
are smooth components and I a finite index set. Let t be a parameter on A and zg, 21, 22, ..., 25, a local coordinate
system on X such that ¢ = 25°27"---2* such that eg,eq,...,ex > 1. Then we have Qa(log0) = O - % and Qx (logY")
is locally generated by

dzg dz dzy,
eo— 61—, ., Ch—, A2k11, 2112,y .ory d2p
20 21 2k

over Ox. Denote by £o,&1,...,&, the image of the above generators in Qx/a(logY’), respectively. As a quotient of
Qx (logY'), the sheaf Qx A (logY’) is generated by &o,&1,...,&,, but under the relation
dZO le de

dt
Eo+&++€,=0 because [f*— =eg— +e1—— +--+ey )
t 20 dzy 2k
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Let Jx/a(logY’) be the dual bundle of Qx A (logY"). It is a subsheaf of Jx, generated by

1 1
*Ziai—*Z()a(), 1<i<k
(3.12) D; =

€ €o
8i 7> k',

where 9; is the local section of Jx dual to dz; in Qx. It follows that Dy, D, ..., D,, is the dual frame of &1, &, ..., &,.

3.1. A “log connection”. We shall construct an operator in End ps(a c) (Rf*Q;/”A(log Y)) which should be re-
garded a “log connection”. Note that we have the following short exact sequence of ¢x-modules

0~ f"Qa(log0) ® QY /A (logY) - Q¥ (logY) — Q}g/”gl (logY) — 0.

Under the identification %/\ :O0x — [*Qa(log0), the above short exact sequence becomes
dt
0 — Q7 (logY) 5 Q™ (logY) — Q373 (logY) — 0.

Here, the morphism %A : Q’}/A(log Y) - Q% (logY') works as [a] = % A« which does not depend on the represen-
tative of [a]. Let Cone® = Q%" (logY) @ Q};/"A(log Y) be the mapping cone of %/\ : Q;;'/"A‘l(log Y) - QY™ (logY).
In our convention, the differential & of the mapping cone works as §(a, [8]) = ((-1)"da + % A B, (~1)"d[B]), where
d is the usual exterior derivative on Q% (logY’) and by abuse of notation, also d denotes the induced differential on

Qy, A(logY’). Then we have the following diagram:
Cone®* —4— Q;/"A(log Y)

(3.13) lp

L pogt

Q% /a(logY

where ¢ : Cone® — Q;/"A(log Y), (a,[B]) ~ [@] is a quasi-isomorphism and p is the second projection. Therefore we
have the morphism pog¢~! in End Db (X,C) (Q"X*/'A(log Y)) For any local section g € O, the multiplication by g is an
endomorphism of Q;/"A(log Y)) because it is f~1 Oa-linear.
Lemma 3.1. The operator V = (-=1)""1poq™! satisfies [V,g] =tg’ in End Db (X,C) (Q;/"A(log Y)), where g' denotes
the derivative of g € Oa.

Proof. Tt is equivalent to show that [po ¢, g] = (-1)"tg’. Define g(a,[B]) = (g9a,g[B] + (=1)""tg'[a]) for any
(o, [B]) € Cone® and g € f1OA. We shall show that g is an endomorphism of Cone®, i.e., gd(c,[3]) = dg(c, [B]).
This follows from that

93 [81) = g (-1 da+ 5 2, (1) a5

- (17 gda+ 9% 18 (-1)"gd[5) - tg' )

and

dg(ex, [8]) = & (ga, g[B] + (-1)""tg'[a])

- (0mdga+ S a8+ (1" Hag'a), (1 d(gl8) + (-1 g )

= (0mgdas g5 n 6, (1) gal8] - tg'dla)
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It is easy to see that goq=gqog so that ¢l o g=goq . Therefore,
[peg ' g]=pogtog-gopogt=[pglog™
But [p, g](, [8]) = p(ga, g[B] + (-1)""'tg'[@]) - g[B] = (-1)"'tg'[a]. It follows that
[pog.gleaq(a.[B]) = [p.g](a, [B]) = (-1)"""tg o g(a, [B])-

By inverse ¢ we prove the statement. (Il

Because of the identification %/\ : Oa - Qa(log0), what we really get is a morphism in D?(X,C)
V:Q%/a(logY) —» f*Qa(log0) ® Q% /A (logY)
such that Vg = gV + % ® tg' € End Db(X7C)(Q;’/"A(log Y)) for any local section g € Oa. Running the similar con-

struction, we obtain an induced C-linear (in fact f~'@a-linear) endomorphism [V] on Q% /A (logY)[y in D’(X,C)
satisfying the following diagram.

QY/a(logY) — QY /a(logY) —— QY/\ (logY )|y —— Q)5 (logY)[1]

lv+1 lv l[v] l(vu)[l]

Q% /A (logY) - Ly QY a(logY) —— QY x (logY)ly —— Q5 (logY)[1]

Since Q;;'/”A(log Y) is flO-linear, each cohomolgy R* f*Q;;’/"A(log Y) is a coherent &a-module. Taking direct

image, we get C-linear morphisms between distinguished triangles in Dgoh(A, On):
RfQ% W (logY) —— Rf.QY/\(logY) —— Rf.QY [\ (logY)ly —— RfQ%7L (logY)[1]
(3.14) lRf*VH lRf*V lRf*[V] lRf*(VJrl)[l]
Rf*Q;/”A(logY) s Rf*Q;/"A(logY) — Rf,,Q};'/”A(logY)h/ S Q;;’]lA(logY)[l]
where the morphism
REV: REQ3TA (logY) > REQYTA (logY)
satisfies [Rf.V,g] = tg" € End pv(a ) (Rf*Q;/"A(log Y)) for any local sections g € Oa.
3.2. Residue. In the above situation, one should regard Rf.[V] as the residue of Rf,V. More generally, let F* be
a complex of &a-modules with a morphism V € End pu(a,c)(F*) such that [V, g] =tg’ for any g € Oa. Let G* be the

mapping cone of t : F* — F*, which computes to F*®~ C(0). Then by the axioms of triangulated categories [HTT0S],
there exists an operator R € End pi(a ¢)(G*) making the following diagram commute in D’(A,C).

F—= F* —— G =F* el C(0) — F°[1]
(

lvﬂ lv lR l V+1)[1]

F—= F*—— G =F* el C(0) — F°[1]

We call the operator R a residue of V. Note that the axioms of triangulated categories cannot guarantee that the
filling is unique. However, the eigenvalues of Ry only depends on V, where R, denotes the induced operator on the
cohomology #° (]-"' ol (C(O)). First, every object in Db | (A, ) splits, meaning that F* ~ @z #F*[-L], since
there are no Ext’ for ¢ > 2 between two coherent sheaves over a curve. It follows that the morphism V breaks up into
sum of morphism consisting of diagonal morphism Vv, : #*F*[-] - s F*[~¢] which is an actual log connection
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and off-diagonal morphism J#F*[~(] - #™F*[-m] but only for £ > m. Thus the eigenvalues of R, are determined
by V¢ and Vyy1. When F* is a locally free sheaf centered at degree zero and V is the usual log connection. Then
above definition coincides with the usual definition of the residue of V.

Returning to our case, the natural choice of a residue of Rf,V is R = Rf.[V] because of the diagram (3.14): by
the projection formula, we have

REOY/A(loxY) & C0) = RY. (Qm(lom 8 flC(O)) - RS (O (logV)ly ).

Our main result concerning the relative log de Rham complex is the following.

Theorem 3.2. The higher direct image Rff*Q;;“/"A(log Y) is locally free for each £ € Z. Moreover, there exists a
canonical isomorphism for every p € A

sz*Q;/"A(log Y)®C(p) ~ H (X, O%/a(logY)|x,), where C(p) is the residue filed at p.

We first present two preliminary theorems.

Theorem 3.3. The operator Ry has eigenvalues in [0,1) nQ for each £ € Z.

Proof. Later in §4 (Theorem 4.19) we will show that in fact [V] satisfies p([V]) = 0 for
e;—1 -
r J
pN)=TTTT -2,
iel j=0 €i
Hence so is R’f.[V] and this implies the eigenvalues are in [0,1) n Q.
Alternatively, by Grothendieck spectral sequence
E3T=RPf, (A (logY)|y) = RPM £ (25 /A (log Y )y ),
it suffices to show that the induced operator R” f, #[V] on RP f. A#9Q5 /5 (logY )|y has eigenvalues in [0,1) nQ
for each ¢ € Z since EP;? is a sub-quotient of E5'?. The following is proved by Steenbrink [Ste76, Proposition 1.13]:
Lemma 3.4. The stalk of fqu;;'/"A(log Y)ly at a point u is generated by the germs (t<&, A&y A&, )u for all

0<a<e and all 0 <i1,19,...,igsn < 1 over the ring C{te}/tC{te} where e is the ged of eq, €1, ..., e, and C{te} is the
ring of convergent power series with the variable te.

We will elaborate the proof of the lemma later. Temporarily admitting the lemma, then
a a, a
%q[v]u(te gil A €i2 A '“gqurn)U = (gte §i1 A fiz AR gqurn)uv

meaning that the eigenvalues of J#4[V] are 0, é, %, s % € [0,1) nQ in a neighborhood of w. This implies that
there exists an open neighborhood U containing w and a polynomial py(A) whose roots are in [0,1) n Q such
that py (#7[V]) = 0 over U. By the properness of Y, we can take a finite open covering U = {U;} of Y such
that p(71V]) = [1; pu, (F[V]) = 0. It follows that p(RP f..#[V]) = 0, meaning eigenvalues of RPf,#[V] in

[0,1)nQ. O

Proof of Lemma 3.4. We will actually prove the original statement of [Ste76, Proposition 1.13] that, in the same
notations as in the lemma, the stalk at a point u of J# qQ;;r/”A(log Y') is generated by germs

(28, A&iy A-in),,

for all a € Zyo and all tuples 0 < iy,49, ..., igin <N OVer (C{t%} The lemma is a direct corollary.
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The complex of stalks Q;;“/"A(log Y'), can be identified with the Kozul complex of operators D1, D, ..., D,, on Ox
putting in degree —-n,-n + 1,...,0. Define Gng(/A(logY)u to be the submodules of Qﬁ(m(log YY), spanned by the
germs

&y NEiy Ao AN,  such that #{m i, <k} >].
Then {GZQB(/A (logY)y }eez is a decreasing filtration of Q% /a (logY),. The associated spectral sequence has E;* =
gre; ?/'A(log Y).. Notice that grgQgg/'A (logY), can be identified with direct sums of Koszul complex of operators
D1, Dis2, ... Dy o0 Ox y, 50O EI’Z = H”Z(grgQ}/A(log Y)) =0 for £+ 0 and EI’O is spanned by germs
&iy NEiy Ao A&, such that #{i,, <k} =7

over C{zp, 21, ..., 21}, thanks to the usual Poincaré lemma. Consequently, the spectral sequence degenerates at Fo
with E;*O = %”’"(QB(/A(IogY))u. Now EI"O is the Koszul complex of operators Dy, D, ..., Dy on C{zq, 21, ..., 2k }-
Because each D; for 0 <i < k is a homogenous differential operator, Fs can be computed monomial by monomial.

For simplicity let &, 4,4, = &, A&, A+ A&;,.. Now I claim that a cocycle

= . . L3001, LAke . r,0
v= Z C“a”vn-ﬁrzo 21 Zk: 6117127“717‘ € El
i1<i2,...<ir

is cohomologous to zero if A; = aj;/e; —ag/eg # 0 for some 1 < j < k. Note that D;(z5°2"+2*) = Ajzg°21"+-z.* for
every 1 < j<k. Since v is a cocycle, the coefficients satisfy

(315) ;(_1)507;1’i2)"~7i}47'~~;ir+1Aif = O

Assume that not all A;’s are zero for 1< j <k then A=Y A? is non-zereo. Then the number

kAa

iy yig,eyipy = L Covinsin,eminat

a=1
is well-defined. Here we extend standardly that c,(;,),0(is),...0(i,) = sign(o)c;, iy,...s, for any permutation o. Then
the element

. . a0 ,01, LAk ¢ .
Z d117127~--7z7‘—120 21 R &iryizseonina
11 <t2<...<bp_1

1,0
in B has coboundary

. . ao a1, Ak¢ )
Aadllﬂz,-uﬂr—lzo 2172 Easin iy riva

M=
™

a=1171< -1

S ¢
_ _ . . ao a1, Oke
= Z Z( 1) Awdil,iz,.“,u,...,irzo 212 i
11<...<tp £=1

L A; A
Onlall ] - @0 a1, LOk¢, )
z(_l) A Couyityin,oigyyin?0 21 Pk &iryizyennsin

]
M=

2
(€] . . . ao a]‘-oo a/k - . . e
A Clityia,in?g 21 "R &iriyensiy = V-

M=

2

11<...<lp

applying (3.15)
1

. 0. .
We conclude the claim. Therefore, EJ" is generated over C by z(°z{"---2*&;, i,....i, With

Di(z5° 27 2 *) = 0.

That is, z5°2{"--20F = t%/¢ for some a. Hence, we conclude the lemma. |
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Theorem 3.5. Let F* be a complex of Oa-modules with coherent cohomologies, equipped with a log connection, i.e
an operator
VeEndpiacy (F*)  such that [V,g] =tg’

for ant local holomorphic function g where g’ is the derivative of g. Assume that the residue Ry of V defined in
the beginning of this subsection acting on each cohomology H* (.7-" ol (C(O)) has eigenvalues in [0,1). Then every

H(F*®) is locally free.

Proof. By the definition of residue, we have the morphism of distinguished triangles
F o Fr—— FrelC(0) — F[1]
lvu lv lR l(VH)[l]
F*—= F* —— Frel C(0) — F°[1]

in D®(A, C). Taking cohomologies gives

e ATH(F P C(0) — HH(Fr) L HUF) — A (F el C(0) —

(3.16) le lVH J(V leH
o ATH(F P C(0) — HUF) L HUF) — A (F P C(0)) —
For simplicity, fix £ and let .# = #*(F*) and denote by kert the kernel of the morphism ¢ : # — J#. Tt suffices to

prove that kert is trivial on .. We are going to show that kert is a subset of t*.# for all k > 0 and thus, by Krull’s
theorem kert is zero.

It follows from the diagram (3.16) that V+1 on kert¢ and V on S/t have eigenvalues in [0,1). Therefore, there
exists a polynomial b (s) € C[s] with roots in [0,1) such that

bl(v)‘%& c t%7
and another a polynomial by(s) € C[s] with eigenvalues in [0,1) such that
bg(v + 1)kert =0.

Suppoe v is an element in kert n¢*.7# for some k > 0. It follows that v = t*v; for some v, € .#. Because the roots of
b1(s — k) are bigger then the roots of by(s+ 1), the two polynomials by (s — k) and ba(s + 1) are relative prime. We
deduce that there exist p(s),q(s) € C[s] such that

1=p(s)bi(s—k) +q(s)ba(s+1).
Therefore, combining the fact that bo(V + 1)v vanishes,
v =p(V)bi(V = k)v+q(V)ba(V + 1)v = p(V)br (V = k)t*v;.
Because of the identity (V - k)t* = t*v, the above is equivalent to
v =t"p(V + k)b (V)vy.
Because b1 (V)v; = tvg for some vy € S, substituting in the last equality yields
v =tFp(V + k)b (Vo1 = t*p(V + k)b (V) twg = t* I p(V + k + 1)by (V + 1)vg € M1 2.

We proved that v is also an element in t**'.#. By induction and Krull’s theorem we conclude the proof. |

Now we can immediately finish
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Proof of Theorem 3.2. The complex R f*Q;/"A(log Y) with Rf,V satisfies the condition of Theorem 3.5. Therefore,
each cohomology R’ f*Q;;/”A(log Y') is locally free. The second statement in the theorem follows from the the locally
freeness of R’ f*Q;/”A(log Y) plus the Grauert’s base change theorem. O

4. TRANSFER TO 9-MODULES

Lemma 3.4 implies the restriction of the relative log de Rham complex on Y is semi-perverse. Indeed, it is even
perverse, showed in [Ste76, §2]. Therefore, there should be a regular holonomic Z-module whose de Rham complex is
the restriction of the relative log de Rham complex on Y, in the view of Riemann-Hilbert correspondence established
by Kashiwara [Kas84] and Mebkhout [Meb84]. The stupid filtration should also translates to a coherent filtration
from Hodge theoretic point of view. Then the endomorphism [V] in the derived category can be captured by an
endomorphism of a Z-module. This enable us to study the relation between the filtration and [V] much easier and
cleaner. In this section, we will construct the filtered 2-module and the endomorphism.

4.1. Construction of filtered holonomic Zx-modules. Since Jx,a(log) is a subsheaf of .7x, the multiplication
by sections in Jxa(logY) induces a morphism Zx — Qx/a(logY) ® Zx, with P ~ Zf;l & ® D,; P locally. The
morphism extends to a filtered complex of Zx-modules

(4.17) QYa(0gY) ® Ix = {Zx > Qx/a(logY) ® Dx — - > Uy 5 (logY) ® Dx }[n]
with filtration F (Q;L;/'A(log Y)e @X) given by
Q?{/'A(logY) ® FranseDx = {F1Px = Qx/a(logY) ® Frs1Px — - = Uy 0 (10gY) ® Fyin Zx }[n].
Let M be the 0-th cohomology of Q?{;’A(log Y)® Z2x and FyM be the Ox-submodule induced by the the filtration
Fy (2 (logY) ® 7x ).
Theorem 4.1. The complex Q’;{/'A(log Y)® Px is a filtered resolution of a filtered Px-module (M, FyM).

Proof. Notice that grf’ (Q}*/'A(log Y) ®_@X) = Q}*/'A(log Y) ® grf’ Px, can be identified locally with the Koszul
complex associated to the regular sequence Dy, Ds,...,D,, over the ring grf’ Zx. It follows that Q}*/’A(log Y)e®
grf Px is acyclic. Therefore, each graded peace grl’ (Q}*/'A(log Y)e @X) is acyclic. We deduce inductively that
Ey (Q}J'/'A(log Y)® @X) is also acyclic; this can be seen from the long exact sequence associated to the short exact
sequence

0~ Fr (%a(logY) ® Zx) — F (%A (logY) ® x) — gri (2% (logY) ® Zx) 0.

Taking direct limit, we conclude that Q}J'/‘A(log Y) ® Zx is a resolution of M. The long exact sequence also implies

the 0-th cohomology of Fy (Q’;;“/'A(log Y)® @X) is isomorphic to FyM. This completes the proof. |

Remark 4.2. Note that Q' (log Y)® Px is a complex of (710, Zx)-bimodules because QA (log Y)is f1OA-

linear. It follows that M is also a (f~'@a, Zx )-bimodule. Note we have two different actions of ¢ on M due to the
bimodule structure. We usually use the left multiplication by ¢. One can think of M as a flat family assembling the
Z-module iy, ,wx, of the smooth fibers X, for p € A and a specialization M = M/tM because using the left f~10a
structure, we have filtered isomorphisms

(C(p) ® M ~ (C(p) ® Q?{/'A(logY) ® Dx ~ Q"XJ'/'A(logY)|Xp ® Dx ~ iXp* &;‘ ® Dx ~ iXp+UJXpa
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where iy, : X;, - X is the closed embedding of the smooth fiber X,.

Remark 4.3. The theorem also says by choosing the local trivialization &3 Ao A---AE,, of Q}/A(log Y), M can be iden-
tified locally with Zx /(Dy, Dy, ..., D,)Zx and gr’” M can be identified locally with gr” @x /(Dy, Dy, ..., Dy)gr” Zx.

Remark 4.4. Let Zx/a(logY’) be the subalgebra of Zx generated by Jx/a(logY’). One can show that M is
nothing but

wx/a(logY’) %(/A%Og ¥) Dx -

And the filtration Fy M is induced from Fowx a(logY'), where Frwx/a(logY) is wx/a(logY) for £> —n and is zero
otherwise. To keep the proof elementary, we avoid talking about Zx /A (logY')-modules.

Theorem 4.5. The complex Q?{/'A(log Y)|ly®Px is a filtered resolution of a filtered holonimic Px-module (M, FoM).

Proof. Because of the bimodule structure, we have Q%‘A (logY)|y ® Zx is the cokernel of the left multiplication by
t on Q?{/'A(log Y)® Zx. Therefore, the first part of the statement is equivalent to ¢ : M — M is injective. It suffices
to prove that ¢ : gr’ M > grf’ M is injective because the multiplication by ¢ is a filtered morphism. But this follows
from t, Dy, Do, ..., D, is a regular sequence over the ring gr’ Zx. It also follows that gr’” M is isomorphic locally to
ng@X/(t,Dl,Dg7 ...,Dn)ngQX. This means the characteristic variety of M is cut out by ¢, Dy, Do, ...,D,, € Op+x
and thus, the characteristic variety is of dimension n + 1. This proves the holonomicity of M. (]

Remark 4.6. Similarly to the case of M, the Zx-module M is just

w log Y)ly ® Dx
X/A( gY)| D/ (log Y)

with the filtration F, M induced by (Fawx/a(logY))y.

4.2. Properties of M. We first calculate the characteristic cycle of M which is important for later when we
identifying the primitive part of gr'¥ M. Then we prove that the de Rham complex of M with the induced filtration
recover Q577 (logY')|y with the stupid filtration. Lastly, we translate the operator [V] € End py(x ) (Q;;'/”A (logY))|y
to an operator R on M

Theorem 4.7. The characteristic cycle of M is

ce(M) = 33 3 &5 [Tys X],

JclI jed

where [Ty, X] is the cycle of the conormal bundle of Y7 in T*X and e; is the multiplicity of Y along each component
Y; foriel.

Proof. The statement is local and we identify M with Zx/(t, D1, Do, ...,D,). We first describe the characteristic
variety of M. The support of grf” M as a sheaf on T* X is defined by the radical of the ideal (¢, Dy, Ds, ..., D, )ert 2.
In fact, z;0; for 0 < i < k is in the radical because

(2:0;) TN = (2900) 0 (2101) - (20 ) = OO 05 = 0mod (¢, D1, Do, ..., Dy )gr” Zx.

Therefore, char(M) is cut out by tyeq, 2000, 2101, -y 2kOk, Vg4 1, -, O, Where treq = 202125 1t follows that char(M) =
User Ty, X.

Denote by p(Z) the prime ideal defining a integral subvariety Z. Let mj be the length of ngMp(T;JX) as
an Artinian grf’?2x ,-module . Then cc(M) = ¥ ., my [T;JX]. For simplicity let us assume J = {0,1,2,.., u}
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and by abuse of notation we also the prime ideal p = p(73,X) of the variety Ty.,X is locally generated by
205 215 ey 20> Ops1s Opa2, -y Op OVET grf’ 2% in some local coordinate system. Notice that

ng@X7p/(t,D1,D2,...7Dn)gI‘F.@X)p = ng:@X,p/(D(’J,Di,...,D;I)grlm@;mg

where

z§°+€1+m+e“, fori=0

1 1 9
*Zi—*2050, for1<i<p

€; e ;

(4.18) D= 11 10 81
—8i——20£, foru+1<i<k

€; e Z
0; for i >k,

because 0y, 01, ...; Ops Zu+1, Zu+2, -, 2k are invertible in ng@X’p. Therefore, ng/\/lp can be identifies with

Clao} /(=" ).

Then m; = dime C{zo}/(25"" ") = %;c; €;. This completes the computation. O

Remark 4.8. The above theorem verifies that cc(M) = limy,_q cc(ip, wx,) = lim,_o [T)’QPX] as cycles in algebraic
cotangent space T*X for p € A* where ¢y, : X, > X the closed embedding of the smooth fiber. In fact, one can show
that C(p) ® gr’’ M, using the left f~'@a-module structure, is isomorphic to gri’i, ,wx, as in Remark 4.2. Refer
to [Gin86] for general results about the characteristic cycles of specializations of holonomic Z-modules.

Corollary 4.9. The de Rham complex DRx M together with filtration F.DRx M is isomorphic to Q’)?/'A(log Yy
with the stupid filtration in the derived category of filtered complezes of sheaves of C-vector spaces.

Proof. We have showed that Fj (Q}?’/‘A(log Y)® .@X) is a resolution of FyM. Therefore, the total complex of

Fyox (Q}*/'A(logY) ®@X) ® N * Ix is quasi-isomorphic to Fypu M ® A™* Tx, which is exactly FyDRx M. It re-

mains to show the total complex also quasi-isomorphic to FgQ}J'/‘A(log Y). This follows from that

Fg.M( }L;’/Z(logY)@.@X)@/\yX: ?;/.A(logY)@Fg*.n_,_.(@)(@/\yx)

~ Q"XJ';A(log Y)® FrinteOx
= Fi QA (logY').
Here, FyOx = Ox for £ >0 and otherwise it is zero. O

Theorem 4.10. The endomorphism V € End Db(Xy(C)QT)L;—/.A(IOg Y) in Lemma 3.1 transfers to a filtered morphism

ViV EN) » (VM En M0, ] @ Pl (S0) {d(0e P))

where o € Q% (logY') and P € Px so that [a] ® P € Q;L(/A(log Y) ® Dx. Moreover, restriction on'Y yields a filtered
morphism

R:(M,F M) » (M, Foy M)
such that

e;—1

(4.19) I1 H(R—i)=0.

iel j=0 e
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Proof. The morphism dip . Y X/ N\ (logY) — - Qu1**(log V) extends to the corresponding complexes of induced Zx-

modules J
t
— A QA (logY) @ Zx - Q1 (logY) © I

Let Cone®* ® Zx be the mapping cone of the above morphism. We get a diagram of complexes of Zx-modules
similarly to (3.13) and taking 0-th cohomology we get the following.

#° (Cone® ® Px) —— M
(4.20) |

pog™"

where abuse of notation, still denote by p and ¢ the induced morphisms from diagram (3.13). Now ¢ is an isomorphism
of Zx-modules. Let [a ® P,[3]® Q] be a class in 5#°(Cone® ® Zx) for any a® P e Q% (logY) ® Zx and [B]®Q €
Q% /a(logY) ® Zx. Then

S@eP[81oQ) = (1) dae P)+ T rs8Q.1)"d([50Q) -

Here, the sign factor (—1)"™ shows up due to we follow the Koszul sign rule. Because %/\ : Q}/A(log Y) - Q% (logY)
is an isomorphism, we have

[Fle@=(-1)"(Fn) {d(as P)).
Therefore, ¢ : M — #°(Cone® ® Zx ) is given by [[a] ® P] = [a® P, (-1)"(%£A)"{d(a® P)}]. Then we have
v= (1o [la]@ Pl (S0 d(we P)).

Restricting to Y we have the induced operator R on M. If a =& A&y A+ A&, then

RIEL A& neny @ P] = (L0) 1 (d( B R B @p))
t z1 )
1
= (@/\)‘1 (60% A 61% A 62@ A ANdzy, ® —zoaoP)
20 Z1 z9 €o

-[angnntue —zoao]

We see that RF,M c F,.; M. The reason for VF.M c F.+1M is similar. To prove the last statement, we work
locally and identify M with 2x/(t, D1, ..., D,,) via the local trivialization & A & A - A&, of Q7 /A(log Y). Then for

Pe9x, R[P]= [izoao ]. In fact, because of the relation Dy, Ds, ..., Dy, the left multiplication by azoao on M is
the same as the multiplication by zla for 1 <i<k. It follows from the identity

(20)(20 = 1)--(20 - £) = 27191
for any ¢ > 0 that

HH(R—f) HH( 50, = D[P = [T oot 08 (P) = ¢ [T 00 [P

iel j=0 iel j=0 €i iel € iel €
—OEgx/(Dl,Dg,...,Dn,t).@)(.

This completes the proof. O
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Remark 4.11. Note that V: M — M is also can be identified with the left multiplication by e%ziai for ¢ < k, by
choosing the trivialization of Q?{/A(log Y), because of the relations D; = eiiziai - %2080 for 1 <7 < k. This means
for any function g € f™1Oa, we have [V,g] = tg’ where t and g are local sections of f™1OA acting on the left of
M. This makes M a (f'2a(log0), Zx )-bimodule. Using Godement resolution, the direct image Rf,DRxM is a
complex of left Za (log0)-modules. Similarly, as we already saw in the proof, locally the morphism R : M — M can
be identified with left multiplication by *z;0; for 0 < i < k, meaning [R, g] = tg’ = 0 for g local sections of f~*0x
acting left on M. '

Remark 4.12. The Zx-module M is even regular holonomic. Even though it is irrelevant for our purpose, we
can also check M is regular using the definition. Recall that a holonomic right Zz-module N is called regular if
there exists a good filtration F, A such that for any o € grf’"?, vanishing on the charateristic variety of A/ one has
grf’ Mo = 0. In the case of M, define locally

GyM = Z RthTMt:ed

r,k>0

where tyoq = z921---2;. This is a finite sum because M is supported on ¢t = 0 and R has a characteristic polynomial.
It follows that G, is a good filtration for M. I claim that G,M gives the filtration in the definition of the regularity.
Since the characteristic variety of M is locally cut out by tred, 2000, .-+, 2Kk, Ok+1, ---, On (see Theorem 4.7) it suffices
to check that GyMtieq € Gy M, GyMz;0; ¢ GyM for 0 < i < k and GpMO; ¢ GyM for k+1 <i < n. It is clear
that GyMteq € Gy_1 M. Due to locally grf M = gr¥ 9 /(t, D1, Do, ..., D,,)grf’ M, it follows that gr” MD; = 0 for
1 <i<n. In particular, grf M9; =0 for k+1<i<n,ie. FyMOI; c F;M for k+1<i<n. Therefore, for k+1<i<n,
because [treq,d;] =0,

GeMO; = Y RFFr Mt 40, Y RFF, Mtl =G M.

r,k>0 r,k>0
Since [t].q4, 2:0;] = (2:0; = 1) t].4, and [2;0;, F1Px ] c FeDx, we have
RFFy o Mt 2:0; = RFFyp M (2305 = 1)ty € R¥ (201 Fpen M + Frin M) t7y.

But locally R has the same effect as the left multiplication by one of iziai for 0 <¢ < k. Hence,

RF (210;Fpsy M + Fpp M) g = R Fyp e Mg + RFFy o Mt

It follows that GyMz;0; ¢ GeM for 0 <i < k.

In fact, later we will see that M is an extensions of regular holonomic Zx-modules which will again prove that
M is regular (see Theorem 5.7 for the reduced case and Theorem 7.13 for the general case).

5. REDUCED CASE: STRICTNESS AND THE WEIGHT FILTRATION

We begin to study the weight filtration W, M induced R on M. For simplicity to state the results and illustrate
the ideas, we assume Y is reduced in §5 and §6. The general case will be treated in §7 and §8. Since Y is reduced, the
multiplicity e; of irreducible component Y; is 1 and R is nilpotent. Recall that the weight filtration of the nilpotent
operator R is uniquely characterized by the following two properties:

e foreach £ € Z, R: WyM — Wjy_oM;
e the induced operator R*: gr}V M — gr"¥, M is an isomorphism for each ¢ > 0.
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5.1. Strictness of R. Let F,W,. M = FLM n W,. M be the induced filtration for every integer r. In fact, the good
filtration and the weight filtration interact nicely because of the following theorem.

Theorem 5.1. The power of R is strict on (M, F,M), i.e., R*Fy M = Fy ., R* M.

Proof. The strictness is a local property; therefore, we can assume M = Px/(t,D1, Ds,...,D,)Zx and R is left
multiplication by zodp on it, recalling that D; = 2;0; — 290p for 1 <i <k and D; = 9; for k+1 < i <n. It is clear that
R*FyM is contained in F,,, R*M. It suffices to show that for every R*P € F,,, M, we can find an element Q) € F, M
such that R*P = R*Q). Assume P e Fy M. If ¢ < b then there is nothing to prove. Thus, we consider the situation
that £ > b. Then the class of R*P vanishes in gr’, ,M. In fact, we have the following lemma:

Lemma 5.2. Denote by [R] the induced operator on grf’ M. Then ker[R]"*! is locally generated by the classes of
all degree k —r monomials dividing t = zgz1--2k.

We can easily check that monomials of degree k —r dividing ¢ is in ker[R]"*!. Indeed, it is already true that
monomials of degree k — 7 dividing ¢ is in ker R"*!. Without loss of generality, we only need to check this for the
monomial z,,12q42°2k:

r+1
R™ zp1 2002k = 200021012, Or 2p i1 Zpa2- 2 = t0p---0p = 0 € M.

We will prove the opposite direction after finishing the proof of the theorem. Going back to the proof of the theorem,
by the above lemma,
P= > 2;Q;+Qu

Jcl,
#J=k—-a+1

where 25 = [l 25, Qs € FyM and Q-1 € Fy_1 M. But R* kills the monomials z; of degree k —a + 1 dividing ¢. It
follows that R*P = R*Q,-1. Iterating the procedure, we eventually find an element @ € F, M such that R*P = R*Q
with Q € F, M. |

Proof of Lemma 5.2. Note that we are over the commutative ring gr’”Zx. We proceed by induction on r. Let
P e gr’ Px be a representative of an element in ker[R]"*!. When r = 0, we have

2000P = 1Qo + ) D; Q.
i=1
Then tQq € (0,01, ...,0,)gr" Zx. Notice that t,0y,0,...,0, is a regular sequence over gr’ Zyx. We have Qo =
Yo 0:Q). This implies
k t n n
2000 P = Z —zl&Q; + Z tan; + ZDlQl
Zi i=1

i=0 Zi Gek+1

k k &z
=y 52080622 +Y Di(Qi+ 5622) + ) Di(Q;+1Q)),
i=0 ~i i=1 v

J=k+1

from which we conclude that zo0y(P - vkt Q:) € (D1, Do, vy D) grt Zx . Because 290y, D1, Da, ..., D,, is again a

i=0 %,
regular sequence, we see that P — Zf:o ZLQ; € (D1, Dy, ..., D,)grf 2x. This concludes the base case for the induction.
Assume the statement is true for the cases when the exponent is less then r + 1. Let z; = [],c;2;. Now for
[P] e ker[R]"™*!, we have [R][P] is in ker[R]". By induction,

(5.21) 2000P= Y z;Qs+). DiQi.
# Ik, i
JcI
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Fix an index subset J of I such that #J = k—-r+ 1. Then z;Q is in the submodule generated by z; for i € I ~ J
and 9; for j € J and k < j < n over gr¥’ Px. Since z; for i e I\ J, 0; for j e J and k < j <n and z; form a regular
sequence, we have
Qr= ) zQi+),0;Q;+ > Q.
ieINJ jeJ k<t<n
Therefore, it follows that

z z
27Qr= Y. 25%Qi+ ). ({ZoaoQ; + Dj;Q;‘) + > DyzsQp.
J

ielNJ jeJ J k<t<n
Then substuiting in (5.21), we deduce that

2000 (P— > ZJQ;—) - > 25%Q;
jeJ #j N
is in the submodule generated by degree k — r + 1 monomials dividing ¢ except z;, and Dy, Dy, ..., D,, over grf’ 9.
It follows that we can reduce the monomials of degree k —r + 1 dividing ¢ in the right-hand side equation (5.21) one
by one and at the last step, we get 200y (P — P') — Q’, where P’ is a linear combination of degree k — r monomials
dividing ¢ and Q' is a linear combination of k-7 +2 monomials dividing ¢, is in the submodule generated by D1, ..., D,
over gri’Px. But ker[R]"! is generated by classes represented by degree k —r +2 monomials dividing ¢ by induction
hypothesis. It says that the class of P— P’ is in ker[ R]" and by induction it is generated by degree k—r+1 monomials
dividing ¢t. Therefore, P is a linear combination of degree k —r monomials dividing ¢. This completes the proof. [

Corollary 5.3. The ker R™! is also generated by degree k —r monomials dividing t if one identifies M locally with
Dx[(t,D1,Da,...,Dp)Px.

Proof. It suffices to show that grf”ker R™*! is generated by degree k—r monomials dividing ¢. Notice that gr” ker R"+!
is contained in ker[ R]"*!, since [R]"*! vanishes on gr ker R"*1. In fact, we have gr! ker R"*! = ker[ R]"*! because
degree k —r monomials dividing ¢ are also in gr ker R™*!. (Il

5.2. The weight filtration. The results concerning the weight filtration and Lefschetz decomposition are formal
and we will work on the abstract setting.

Theorem 5.4. Let N : (G, F,) - (G,Fei1) be a nilpotent operator on a filtered Z-module (G, F,). Asume that
every power of N satisfies strictness, i.e., N*FyG = FoyN®G for a > 0 and b € Z. Then the induced operator
N7 : FuerWW G — Fpy gtV G is an isomorphism for v > 0, where W, is the weight filtration induced by N.

Proof. Tt suffices to prove that for any b € Fy,,W_.G, we could find a’ € F,W,G such that a = N"a’. Because
W_.G c N"G, let N"a = b for some a. Then by strictness, there exists a’ € FyG such that N"a’ = N"a ¢ W_.G. Tt
follows that a’ € W,.G. Indeed, if a’ € WG for some k > 0 such that a’ # 0 € ng‘_ﬁkg. Then N™Fa’ =0 € grz_kg
because N"a' = 0 ¢ ng+kg7 from which we conclude that a’ € FyW,,,_1G. Thus, iterating the procedure, a’ is

actually in F;W,.G. We conclude the proof. |

Let P, =qef ker (N"*1: g1V’ G — gr¥_,G) be the primitive part of gr’'G, which can be identified with

ker N"*1
ker N7 + N ker N7+2°
See Example 2.7. Recall the Lefschetz decomposition:

ngVg = P NYP,,op for any r € Z.

£20,-%
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There are two possible ways to define the filtration on P,: first we have the natural filtration F,P, induced from the
inclusion P, — gr!¥’ G and second we can also define the filtration using

Fyker N™1 + ker N + N ker N™*2
ker N + N ker N7+2 '

But indeed, the two different methods result in the same filtration because of the strictness. Let m € F,W, + W,_;
such that N™*'m e W_,_3 so that represents a class in FyP,. It suffices to find an element in F, ker N"*! representing
the same class as m in FyP,. Let m = mq + mq for mq € F;,W, and mq € W,_;. It follows that N"*'mq € FpppiqaWer_g
because both N™*'m, N™*tmy € W_,_3 and m; € FyW,. Since N"*3 : Fy_oW,,3 — Fy,.s1W_,_3 is surjective, there
exists © € Fy_oW,,3 such that N3z = N"*'m; € Fy,,.1W_,_3. See the proof of the above theorem. It follows that
my — N2z € Fyker N™*! represents the same element as m in F;P, c Fggr}fv.

Corollary 5.5. The Lefschetz decomposition of gr'V'G respects filtrations, i.e.
Fur)'G= P NCFy_yPriog for any r e Z.

£20,-%

Returning to our situation, it follows that:

Theorem 5.6. The induced operator R" : Fygrt™W M — Fy,.gt™ M is an isomorphism. Therefore, the Lefschetz
decomposition of gr'™V' M respects filtrations, i.e.

F.ngVM = P R'Fy_¢Pyio0 for any reZ.
£20,-%

5.3. Identifying the primitive part P,. Recall that Y’ = NjesY; for a subset J of the index set I and Y+ g
the disjoint union of Y7 such that the cardinality of J is 7 + 1. The morphism 71 : Y1) X is the natural
morphism induced by the closed embeddings 77 : Y7/ - X.

Theorem 5.7. There exists a canonical filtered isomorphism ¢, : (P, FeP,.) - Ti”l)wf,(rﬂ)(—r).

Proof. Denote by D” the normal crossing divisor Y/ nY;.; on Y/. The residue morphism

Resg iy : QX" (logY)ly = @ Q37" (log DY)
#J=r+1

extends to a morphism of complexes of filtered induced Zx-modules

Resg (o t QX" (logY)ly @ Zx - @ Q37" (log D) ® Zx.
#J=r+1

Denote by H* the k-th cohomology .#7* (Q;}"“(log Yy _@X). Taking 0-th cohomology of the above yields, by
Example 2.4
Resy ooy i HY > @ rlwys(+D7)(-1).
#J=r+1

din QYA (logY) — Q%" (logY) also extends to the complexes of induced Zx-modules, we

have a short exact sequence of Zx-modules

Since the morphism

dt
0 — Q7 (logY)ly ® Zx =5 Q3" (logY)ly ® Zx — QY75 (logY)ly ® Zx — 0.
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Considering the associated long exact sequence

> H! >Mj

0
o
M —— H° > 0

we have the morphism %/\ : M - H° and it vanishes on the image of R. To motivate the proof, let me do some local

(5.22)

calculation. Let ¢ = dz—’? A % IV % A---Adzy, represent a local frame of Q}/A(log Y)|y. Then a local section of M
is represented by (® P for P a local section Zx. Then Resy 41y % AC® P is a section of @4 y_,.1 Q7 (log D)@ Zx.
Post-composing with the projection

&, Q’;}T(logDJ)®@X—> P 7:;]0.)%7(>+DJ)(—7”)7
#J=r+1 #J=r+1

we make the morphism explicit:

dt dt
ANM— P 1wy (xD7)(-r), [C®P]»—>[Res§—/(r+1>7/\(®P].

ReS{/(rH) o —
t #I=r+1

Let ¢ ® 25P represent a class in ker R"™! for some fixed ordered index subset J with #.J = r + 1, where 27 =Iljervs 2j

(Corollary 5.3). Its image under the above morphism only contained in the component 77wy s (*D?)(~r) because
27 vanishes on other components. Thus, the image is the class represented by

dzg dz dzy,

—_ /\ e —

do—
(5.23) Resg o — A A Adzy ® 25P = iﬁ Adzpsr A--dzp ® 27P € Qy (log D‘]) ® Dx,
20 21 Zk Zj

where dzif = NjernJg % and the sign depends on the order of J. In fact, from the calculation we see that the image
J J

does not have any pole along D7, so it is contained in the subsheaf consisting of classes represented by QY7 © Px.
This means that the class of (5.23) in 7/wy-s(*D”)(~r) is also contained in the image of the inclusion

d .
Tjr]wa(—r) - T;]wYJ (D7) (-r), [dzg Adzpsr A--dzn ® P] [Q Adzpsy A--dzn ® 25P).
<7

TJETJrl)

See Example 2.4. It follows that we obtain a factorization p, : ker R"*1 — wy r+1) (7). In conclusion, we have

the following commutative diagram.

I 1
ker R7 1 <o > 7D ey (-1)

[ l

t €S
M ST >®#J=r+1ﬁ]wYJ(*DJ)(_7’)

For a local section ( ® zx P where zx = [;cx 2; @ monomial of degree k —r + 1, representing a class in ker R", its
image under p, is indeed zero because zx annihilates all Q77" (log D7) for index subset .J such that #.J =+ 1. This
implies the morphism p, kills ker R". The morphism p, also kills Rker R"*2, because by (5.22) %/\ vanishes on the
image of R. Thus it factors through

B ker R™+1 (r41)
T kerR" + Rker T2+ Wy (1) (=7).

¢ Pr
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The morphism ¢, is filtered surjective because for dzj A dzgy1 A+ Adz, ® P € Q7 ® FyPx representing a class in
Fyr!wys(~r) with #.J =r + 1, we can find a lifting class represented by ¢ ® 27P in Fyker R Tt follows that

ce(Pr) 2 CC(T+(T+1)WY(1'+1)) = Z [Ty, X].
#J=r+1

Summing up the inequalities gives

2 (r+Dec(Pr) 2 3 (r+1) > [Ty, X]= 3 (#J) [Ty, X].

r>0 720 #J=r+1 JcIl

On the other hand, by the Lefschetz decomposition and Theorem 4.7, we have
S (#J) [Ty X] = ce(M) = ce(grV M) = > (r+1)ce(Py).

Jcl r>0

Therefore, all inequalities must be equalities, i.e. cc(P,) = cc(T(Hl)w};(Hl)). It follows that ¢, is a filtered isomor-
phism [HTTOS Proposition 3.1.2]. O

6. REDUCED CASE: SESQUILINEAR PAIRING ON M AND LIMITING MIXED HODGE STRUCTURE

6.1. Sesquilinear pairing. We begin to construct the last data we need for the limiting mixed Hodge structure —
Sesquilinear pairing. In the sense that M is the specialization of i x, ,wx, for ¢ # 0, the sesquilinear S': M®cM — €x
should also be the specialization of i x, , Sx,, where S, is defined in §2. Presumably one would expect that the pairing

(S([G1® P1],[CG2® P2]),m) = P_I}é(iXHSX,,(Cl ® P, ® P),n)
— lim e(n+1)
t—0 (27T\/_)"

should work on M for (; ® P;, i = 1,2 sections of Q}/A ® Px over local chart U representing classes of M, and 7 is a

f PPy ACiAG
Xt

test function over U. But one could check that the integral [y Py P (1) ¢1AG, could have order (—log [t|?)* near the
origin where k + 1 is the number of components that intersect in U, so the limit may not exist. To avoid the issue,
we use a Mellin transform device (see [Sab02, 4.E]): locally

e(n+2)

(2r/=D)

- Res.o- 5(2) f||25dt dt((;(”j_l)nf Plpzmclm)
(2)

dt dt
f |t |25 " —(ix, . Sx, (1 ® P, ® P»),n).

(S([C1® P1],[C2® P2]),n) =det Resgo———="— f |t]** P, Py Pz??* A G A* A G

= Resgeog————

The last expression in the definition in some extent explains that S is the specialization of ix, , Sx, and the 0-current

Res,_g—=2 fA |t|2s dt A 4t js doing the job of renormalization of ix,,Sx, for t # 0. In fact, for any test function g

27
2 édt dat
Res,- 0 ( ) [ [t[? N Y= 9(0).

on A, we have
We have not check that S is well-defined, but let us do an example to see how the Mellin transform works.
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Example 6.1. Suppose Y is smooth, then R is identical zero and M =~ iy, wy, by Theorem 5.7. Thus, the
pairing S should recover the natural pairing Sy. In local coordinates ¢ = zy and for any local sections (; ® P; =
dz1 ANdzg N Ndz, ® P; of Q7 /A(logY) ® P, 1=1,2 over local chart U,

e(n+2)
(2 \/_ n+1

Y N
:Ress=0/ It 2P1P2(77)/\ o

(5[ @ P [ @ P n) = Resso 02D [ BT nin @ agy

dZi /\TZZ'

|2s

_ v _
integration by parts on ¢t and ¢ = Ress-q [X i oo (P1 Pg(n)) /\ 5 ——dz; Ndz;.
™

Because the Laurent expansion of s~2|¢[>* is ¥.7° 0 (log |t[? ) =2 the above continuously equals to, by Poincaré-Lelong
equation [GH14, Page 388]

S S
L10g|t|26080(P1P2(ﬁ))A) or dZZ/\d,?,ﬁ:/;/Png(’l’})/\

dzz Adz;

_e(n+1) — —
= vy PLPy(1)C1 A G2

=(iy .Sy ([¢1 ® P1],[¢2 ® P2]),7m).

We can take a cleaner point of view. In the case Y is smooth, the form Py P (7)¢1Als is smooth in the neighborhood
of Y. It follows that ix,, Sx, extends smoothly to ¢ =0 and the limit of ix,,Sx, is exactly iy, Sy.

When Y has several smooth irreducible components, the idea of computation is similar to the above. Now we begin
to establish the statements needed to ensure S is well-defined. For any test function 7 over an arbitrary open subset

U of X and two sections my,mg in H (U7 Q?{/A(logY) ® :@X), the (2n + 2)-form % Amy A % Ama(n) is smooth

away from Y but with poles along Y supported in U. Locally, say m; = (® P; for { = dz% A % A % Adzgy1 A Adzy

and i = 1,2, the (2n + 2)-form % L Amy A gt /\mQ(T]) is just P1Py(n)% dEACA % A(¢. Let F(s) = F(s,m1,m2,m) be the
meromorphic continuation via mtegratlon by parts of the following function

e(n+2) 2Sdt dt
o ¢—)n+1 IRl & nma().

The function F'(s) is holomorphic when Res > 0 and has potential poles at non-positive integers. Note that F'(s) is
independent of local coordinates. We are only interested in the polar part of the function F(s) at s =0.

Theorem 6.2. The polar part of F(s) at s =0 only depends on the classes of m1 and ms in M.

Proof. Let {px} be a partition of unity of the open covering {Uy} by local charts. Then

~ e(n+2) 257 - /\—t/\m
FO) =% ey S e A 2(pan).

Since p,7 is a test function over Uy, without loss of generality, we can assume U itself is a local chart. It follows that
we can assume that m; =(® P; for i =1,2 and ( = dz—zll A % A dz% ANdzpi1 A Adz,. We begin with some properties
of F(s).

Lemma 6.3. Under the assumption that m; = (® P; for ( = dz% A % A A dz% A-Adz, and fori=1,2, the followings
are valid.
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(1) the order of the pole of F(s) at s=0 is at most k+1;
(2) if P;=tP] for one of i = 1,2, then F(s) is holomorphic at s = 0;
(3) for 0<j <k we have,

F(S,C1 ®P1,<2 ® zjﬁng,n) = F(S,Cl ® ZjajPhCQ ®P2,?’]) = —SF(S,Cl ®P1,C2 ®P2,’I7).

Proof of the lemma. The Laurent expansion of F(s) at s =0 is

F(s) = fX|ZI\2HP1P2 /\(

d,zZ Adz;), where zf = Hzl

el

2s _ _ n /_1 k
- |Z;k|+2 9101 P1Pa(n) /\( dz; Adz;), where Of = H 0;
Xs i=0 27 i=0
oo SZ*(?kJrQ) ¢ - n \/__1
-3 5 [ (tog ) 0,81 P Pa(n) A\ (Y —dzi n ).
=0 ! X =0 271'

The order of the pole at s =0 is at most k + 1: if £ <k + 1, the form

(10g|zf| ) 0101 P Py(n) /\(\/_dzl AdZ;)

is actually exact because one of a;’s must be 0 in the expansion of (log |Z]|2) into a linear combination of Hf:o (log |zi|2)a
with ¥ a; = £ <k + 1. This proves (1).

Suppose that P; = ¢P]. Then the function

F(s) = / |21** 72t P{ Py(n) /\(\/ﬂ__dzl A dZ;).

is well-defined at s = 0 because the form

*P1P2(77) /\(

is integrable. The same argument works for the case when P = tP;. This proves (2).

dzl Adz;)

Now we turn to the last statement
F(s,(® P1,{® 2j0;P2,7)

2 d d
__emn+s) E(TL+ ) f|t‘29Z]6(P1P2n)ﬂ/\ﬁ/\.../\dzn/\%/\%/\.../\dzn
(27.‘.\/__1 n+1 21 20 21

52 8- V=
f |ZI\{]}|2 2 1259, 58 P1P27’] /\( dzz /\de)

integration by part on dz; =—s f |21[%*72 P, Pyny /\ dzz A dzZ;)
X
:‘SF(57C®P1,C®P2,77)-
The same argument works for F'(s,{ ® 2;0;P1,{ ® Py,n) = —sF(s,{ ® P;,{ ® P>,n). This proves (3). O

Returning to the proof of the theorem, if one of ( ® P; is dzl A 32 A~ dz: Adzg41 A+ Adzp, P! the above lemma

(2) says F'(s) is holomorphic. If one of ( ® P; is dzl A ZZ A- ”Z’“ Adzgi1 A+ Adzp, ® D P, then the (3) above lemma
says F(s) is in fact 0. O
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For any sections «, 3 € M, let {p,} be a partition of unity of the open covering {U,} by local charts such that
o, B lifts to ay, By over Uy in QX/A(log Y) ® 2x. The above theorem just says that the pairing S: M &c M — Cx
given by

<S(Ot, B)7 77) =def ResS:O ZF(S7 d)w B}n PAW)
A

is well-defined and does not depend on the choice of partition of unity. By the above lemma we also have the
following.

Corollary 6.4. The operator R is self-adjoint with respect to S, i.e. So(R®cid) =S50 (id ®c R).

Because the self-adjointness, we have induced pairings on the graded quotient S, : gr,W Mec gt M - €y for
every integer r. Denote by PrS, the pairing

S, o (id ® R") : Pr ®c Py - Cx.

Theorem 6.5. The isomorphism ¢, : (Pr, FoP,) — T+(r+1)w}~,(,,.+1)(—r) in Theorem 5.7 respects the sesquilinear
pairings up to a constant (=1)"(r +1)!"1, i.e.

PRS (o, B) = ((:1), +(T+1)Sy(r+1>(¢r 0 3)

for any local sections o, 3 € P,..

Proof. Because the problem is local, it suffices to prove the theorem for o and 3 are represented by
dz dz dz
N2 —k/\dzk+1/\ “ANdzy, ® 2k,
21 22 2k

and #K; =k —r for i = 1,2 over a local chart U respectively. Recall that zx =[] cx 2;. Let n be a test function over
U. We have

(PrS:(a,8).m) = (S(a, B B),n) = Res.o(=s)" [ |ar" %Kl%(n)/\( —dzi n )

If a # 8, the above is in fact zero. Indeed, for v € Ko \ K7, by choosing R" = HieI\le{v} 204,

(PrS.(a, B),1) = (S(R"a, B), 1) = Resyeg [ a2 QZ—zir/\( e ndz),

where 77 = 81\(;(1\{@})%(2'7)_177 is a smooth test function. The function
Sl i A
U

1zv~

dzl AdZ)

is holomorphic at s = 0 because
/\( dzz Adz;)
ZI Zv =0
is integrable.
Therefore, we reduce the proof to the case when a = 8 represented by
dz1 dzg dzy
—_ /\ [E— /\ e /\

— A Ad2, ® 2K.
21 z22 Zk
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We shall prove that

PRST(CV7OZ) (( 1)1)' j yK(¢r ¢ra)a

where K is the complement of K in I. Without loss of generahty, we can assume K = {r+1,7+2,....k}. Then

PrS, (o, @) = Resyoo(—5)" / 22 1‘[ 12520 /\(

j=r+1

= (-1)"Ress-0s (T+2)f H|Zz|2SaKaK(n)/\
r+1

(-1 /X (logU|2i|2) Ox0x (1) /\( de A d7Z)

dzl A dZ7)

dzl A dz;), where O = H@i

T (r+1)!

(%) = (5 Jrli;' f Hlog|zz| OO0k ( 77)/\ de/\dzl)

G

- e Ao
G ®
(r+1)1°"

dzz ndz;) (Poincaré-Lelong equation [GH14, Page 388])

dt dt
Syf(ResY?? N ResY?T Aa).

1 i .
The equality (*) holds because if we expand (log e, |zi|2)wr as a linear combination of [T¥, (log|zi|2)a with
Zf:o a; =7+ 1, the only possible non-exact form among

k
Omm)@%mA( mwm

=0

is (TTj_o log |2i|*) 0x O (n) AL 0( Ldz; AdZ;). Note that while Res, % depends on the order of the index sets K and
I, the pairing

-1 T+
S S e (6:0,608) = 10

does not because the sign will cancel out. We complete the proof. ]

dt dt
Y?(ResY77 A, ResY77 Aa)

6.2. Constructure of the limiting mixed Hodge structure. We are going to show that the triple (DRx M, F, W)
gives a mixed Hodge complex. Unlike the Q-mixed Hodge complex considered by Deligne [Del71], where the rational
structure is a required input, we do not have this piece of information in our situation. We will redo the Deligne’s
argument on mixed Hodge complex by sesquilinear pairings. It also worths to point out that the sesqiuilinear pairing
makes one check the first page weight spectral sequence of DRx M is a polarzed bigraded Hodge-Lefschetz struc-
ture easier than the case in [GNA90], where they need to decompose the differential d; on the first page into a
combinatorial differential and a sum of Gysin morphisms.

We first set up the pairing on each page of the weight spectral sequence abstractly. Let A be a holonomic Zy-
module equipped with a sesquilinear pairing S : N ®cN — € on a complex manifold Z. Assume that N has compact
support. Let N be a nilpotent operator on A/ such that So (id ®c N) = So (N ®cid). Let W, be the monodromy
filtration associated to N on A. Denote by E!J be the weight spectral sequence convergent to gr' H*(Z, DRzN')
with E}7 = H*/(Z,er DRzN). By abuse of notation, denote by Sy, the induced pairing

H"(Z,DRzN) ®c H¥(Z,DRzN) » H°(Z, DR, zN @c N') > H(Z, DR, 5€5) = C
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multiplying a sign factor (k). Let a be a local section of (DRZ/\/')fjf1 and b be a local section of (DRZN)i. Then
D(a®cb)=da®cb+(-1)7a®cdb

for D a differential on DRZ,ZN ®c N. Applying S, we find that

(6.24) DS(a,b) = S(da,b) + (1)1 S(a, db).

Since the differential d is compatible with the weight filtration, we have an induced pairing E1(S)y on the first page
E}7 of the weight spectral sequence by the pairing

H*(Z, gt DRZN) ®c H*(Z, gt DRZN) > H*(Z,DR, 5er"{ N @c gtV N') » H"(Z, DR, 5C7)
multiplying a sign factor (k). Then by equation (6.24) we obtain
0=e(=j)Er(S)-;(dra,b) +e(=j = 1)(=1) 7 E1(S) -1 (a, dib),
since DSa ®¢ b is cohmologous to zero. Working out the sign, the above is equivalent to
Eq(9)-(d1a,b) + E1(S)-j-1(a,d1b) =0,
i.e. the differential dy is skew-symmetrc with respect to E7(S). It follows that we have an induced pairing on the

second page: Fo(S) : E;’k_i ® E;i’_k” — C since Fy = kerd;/Imd;. Again, it follows from the equation (6.24),
the differential dy is skew-symmetric with respect to E2(.S). By an inductive argument, we get the induced pairing
E.(S): E,®E, - C on the r-th page of the weight spectral sequence E, ® E, — C such that d, is skew-symmetric
with respect to E,.(S) for every r > 1.

Next, let L = [w]A be a Lefschetz operator for a Kihler class [w] € H'(Z,Q7) n H*(Z,R) on Z which can
be thought as a morphism L : C - C[2] in D?(Z,C) and so is X = 2m\/=1L. Therefore, we obtain a morphism
X :DRzN - DRzAN[2]. Let us work out the relation between the sesquilinear pairing Sy and the operator X. By
funtorailty, we have the following commutative diagram in D?(Z, C).

DR, 7N ®c N — DR, ¢z —— DR, 70b; ——— A3 ® Dbz [2dim Z]

[ Jx Jx Jx

DR, 7N ec N [2] 224 DR, ,€,[2] —= DR, ;b5 [2] —— A} @ Dbz [2dim Z + 2]

Similarly, we have S[2] o (id ®¢ X) = XS. It follows from X +X =0 on A% ® Db[2dim Z] that
(6.25) e(k)Sk(X=,=) +e(k-2)Sk-2(-,-) =0, ie. Sg(X-,-)=Sk-2(-,X-).
Returning to our situation, we begin to construct a polarized bigraded Hodge-Lefschetz structure on
gr'V H*(X,DRxM).

Fix a Kéahler class [w] on X and let L = [w]A : DRxM — DRxM[2] be the Lefschetz operator and X; = 27rv/-1L as
the discussion above. Relabel the first page of the weight spectral sequence by

w
Vir = H(X,grf DRx M) = E;*F,

Let V' = @ kez Vi,i with filtration F,V induced by F, M. Denote by E;(R) the induced operator by R on WE; and
let Yo = E1(R). Denote by S¢y, for ¢,k € Z, the induced pairing on Vi, ® V_p i

HY(X,gry DRxM) ® H(X, gt DRx M) — H°(X, DRy ger)’ M ®c gr' M) > H)(X, DR 5€x) = C.
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multiplying a sign factor £(£). Let d; be the differential of F;. In terms of relabeling, we have

dy: (Ve FoVir) = (Ver1, -1, FoVir1 k-1)-
Theorem 6.6. The tuple (V,X1,Y2, FV,® S i, d1) giwves a differential polarized bigraded Hodge-Lefschetz structure
of central weight n.
Proof. Let us first check the conditions in Theorem 2.10 one by one. It is clear that two operators X, Y5 are commute.
Moreover, we have Yo : (Vo i, FoVi i) = (Vo k-2, Fer1 Ve k-2) such that

Y5 FVik = Fok Vi,

is an isomorphism by Theorem 5.6. Denote by Py,V_;,. the Ya-primitive part ker Y5*' nV_;, = H7(X,DRxP,). It

follows from Theorem 5.7 that (Py,V_; ., FePy,V_; ) is filtered isomorphic to H~ 3(Y(”l),DRW,,,H)w};(,,,H) )(-r) via
¢r. Therefore, X; FoPy,V_j , ¢ Fe_1Py,V_j,2, and by Hard Lefschetz,

X FoPy, Vo = Fo i Py, Vj,
is an isomorphism. It follows from the Lefschetz decomposition of Yo that XJ FV_ .
This proves (pbHL1) in Theorem 2.10. (pbHL2) follows from the equation (6 25).

Because the operator R self-adjoin with respect to S by Corollary 6.4, we have S;j (-, Y2-) =5, r+2(Y2—,-). By

Theorem 6.5, the morphism ¢, identifies Py, S_; ; =def S—;r(—, Y5—) with ((r+1))‘S (1) - Recall that

- F,_;V}, is an isomorphism.

e(n—-r+j+1)
(2m/ 1)
and that S{,(TH)J(X{—, -) is a polarization on Hg;igj(?(”l),((:). The bi-primitive part P_;, = kerX] nkerY5nV._; .
together with the induced filtration F,P_;, and the sesquilinear pairing S;,(X]—,(-Y)5-) is identified with the
polarized Hodge structure H"lr Iy e+ C)(-r) via ¢,.. This proves (pbHL3).
It remains to prove that d; is a differential of the bigraded Hodge-Lefschetz structure V. Clearly, we have
[d1,X1] =[d1,Y2] =0
because d; is induced by the differential of DRx M and d; preserves F,. The differential d; is skew-symmetric with

respect to @, 5, is formally follows the discussion at the beginning of this subsection. Thus, we finished checking
that d; is a differential. O

Sy ;(a,b) = [1_/( oy @A b, for ae H" (YD) and be H» 7 (Y (+D),

Corollary 6.7. We have the following

(1) the Hodge spectral sequence degenerates at pFE1,

(2) the weight spectral sequence degenerates at WE,,

(8) The tuple (@eez gtV HY(X,DRx M), F, Xl,Yg) together with the pairing induced by @ S s a polarized
bigradged Hodge-Lefschetz structure of central weight n.

Proof. We slightly modify the idea of cohomological mixed Hodge complex in [Del71] for statement (1) and (2).
I claim that the k-th weight spectral sequence Velfr =qot VBT together with the induced filtration F, and the
induced pairing SZ yo(id ®@w): VE”“,, ® @ — C is a polarized Hodge structure of weight n + £+ r and the differential
dy : Vg’fr - ‘/Z]-Ci-l,r—k is a morphism of Hodge structures. Indeed, the differential dj, is skew-symmetric with respect to
the sesquilinear pairing, i.e. SZT(dk—, -)+ SZLT_,C(—, di—) = 0. Therefore, if (—1)‘15‘2T o(id®@w) forg=n+{+r-p
is a Hermitian inner product on

(VE)™ ={ae FPV : SE (a,b) =0 for all be PP~y 3
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then (—1)‘152:21 o (id ® w) is also a Hermitian inner product on
(VEDY™ = {ae FPVE S8 (a,b) = 0 for all be FPém+ 1y
In particular, we have the decomposition

vist= @ (v

pg=n+l+r

and the morphism dy, : (VX)) » (V)™ is compatible with the decomposition. See Remark 2.11. By induction
the claim is proved. It follows that dj vanishes for k£ > 2 by it is a morphism of Hodge structures of different weights,
which proves (2).

Since each bigraded piece Vp, = H* (X, ngVDRXM) is pure Hodge structure of weight n + r + ¢, the two vector

spaces H* (X, grigrlV

dy respects F, and

DRXM) and Vp, is isomorphic. Moreover, the isomorphism is compatible with d;, because

grV oer DRx M = grl’gr DRx M.
Taking cohomology of di, we obtain that grl¥ H* (X,gr DRxM) is isomorphism to grl’ H* (X,DRxM). It fol-
lows from the dimension reason that H* (X7 ngDRXM) is isomorphic to H® (X,DRx.M), which is exactly the
degeneration of Hodge spectral sequence at pFj.
The statement (3) follows from Theorem 2.12. O

The third statement in the above corollary ensures that the weight filtration on the hypercohomology of DR x M
is the monodromy weight filtration of the nilpotent operator R, i.e. RW,H*(X,DRxM) c Wo_ o H*(X,DRx M)(-1)
and R" : gr'¥ HY(X,DRxM) — gt H*(X,DRx M)(-r) is a filtered isomorphism. We proved Theorem A for the
case when Y is reduced.

7. NON-REDUCED CASE: GENERALIZED EIGENSPACE M, AND THE WEIGHT FILTRATION

Now we move to the general situation. Recall that we have introduced the notations: the index set I consisting
of indices of irreducible components of Y and e; is the multiplicity of Y along the component Y;.

7.1. The generalized eigen-modules M,. We begin with studying the generalized eigen-modules ker(R - «)* of
the morphism R in the category of filtered Zx-modules. The generalized eigen-modules are naturally sub-modules
of M and one can put the induced filtration on it. However, this filtration does not match with the expected weight
of the mixed Hodge structure and is difficult to study. Instead, we use the idea of Saito in [Sai90]: one regards the
generalized eigen-module as a sub-quotient of M and puts the induced filtration on it. It turns out the filtration
behaves nice. Now let us begin to settle some definitions.

Define Msq = ker [Thsa (R = A%, Msy = ker[Taso(R - A)® and M, = Myo/Ms,. Then M, is canonically
isomorphic to the generalized eigen-module ker (R - «)®. Endow M, the filtration F, M, induced from (M, F,M),

_MzaﬁFcM
T MognFE M

There are parallel definitions on the relative log de Rham complex. Denote by C*® = Q;;“/”A(log Y) ® Oy for simplicity.
Define sub-complexes of C* by

€2, =C* @ Ox(-[aY]), C3,=C"@Ox(-|aY|-Yru) and Cf=CL,/CL,,

FiM,,
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where Ygeq is the associated reduced divisor of Y. Notice that if we let I, be the subset of I consisting of all ¢ such
that ae; is an integer, then
Co=C5,®0y, , whereY; =>Y,.
i€l
One can check C? is a generalized eigen-perverse sheaves of the residue [V]. Since Ox(-[aY]) is preserved by
relative log differential Fy A (~logY’), the multiplication by relative log differentials gives a morphism, recalling that
Dy, Dy, ..., Dy, are local generators of 7x/a(~logY’) dual to the local generators £1,82, ..., &, of Qx/a(logY),

(7.26)  Ox(-[aY])® Zx - Qxja(-[a¥Y]) ®@ Zx, 2"TePm Y ¢ 0D eP=¢ o:1l(D;+0;) 0P,
J J

where, using the multi-index notation, zgae] = [Lier 2 denotes the local generator of Ox(-[aY]) and define

a; = [Di,zgo‘e]]/zgae] = [ae;]/ei - [oveg]/eg. The morphism extends to a complex Q5% (logY)(=[aY']) ® Zx, which

is a subcomplex of Q}?’A(log Y)® Px (see (4.17)). Tensoring Oy on the left gives C3, ® Zx by the above definition.

Further tensoring ﬁyla on the left, we obtain the complex of induced Zx-modules C}, ® Zx with the filtration defined
by

[aei]

%

Fo(CLePx) =05 ® FrinteZx.

The following two theorems give the description of the generalized eigen-modules in terms of complexes of the induced
P x-modules.

Theorem 7.1. The complex C: ® Px is filtered acyclic and the characteristic cycle of the 0-th cohomology is
cc(H°(CoL® Dx)) =Y. (#1.nJ) [Ty, X].

JcI

Proof. Similarly to the proof of Theorem 4.1 and Theorem 4.5, the associated graded grf’ (C® ® Zx) locally is
the Koszul complex of the regular sequence (to, D1, Da,...,D,) over grf 2y, where t, = [Ticr, #: is the defining
equation of Y7 _. It follows that grf’(C® ® Zx) is acyclic and therefore, C ® Px is filtered acyclic. We also get that
erf’ 79 (C2 ® Zx) is locally represented by

weld d d
(7.27) Ca®gri D/(to, D1, Dy, ..., Dy)ert Dx,  where ¢, = z[, 1221 (922 ALk, dzpe1 A Adzp.
21 Z22 2k

As the calculation in Theorem 4.7, we get the characteristic cycle is ¥ ;o (#IonJ) [T;JX]. O

Theorem 7.2. There exists a canonical filtered isomorphism
(7.28) Vo : (H0(CL 0 Dx) , Fol°(CL® Dx)) > (Ma, FuM,).
In particular, the characteristic cycle cc(Mg) = ¥ jer (#1a 0 J) [T, X].

We first study My, and M., locally by pointing out their cyclic generator. In principal, this always can be done
because every holonomic Zx-module locally is cyclic.

Lemma 7.3. Locally, Ms, is generated by zgae], and Msq is generated by z}ae]ﬂ where 1 = (1,1,...,1) e ZL.

Proof. Let us first check that z[,ae] € Ms,. It suffices to check that it is in

ker [ | eﬁ ](R— ei)

i€l j=[ae;
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This is follows from direct calculation:

1 (R-L)efeel -] T (r- 1T (wz——) e

il j=fae;] il - [aeJ il j=[ae 1 ¢
Y [ae;] e —[ae;] _
H M?] 2510 =t[] —— P 0; =0e M.
i€l € i€l 6

Because R satisfies the identity (4.19), M5, is also equal to the image of [];; Hgigi]_l(R - ei) It follows from

foed] a 1 ae;
0T - D=1 T Cen- )=y Lol
iel  5=0 iel j=0 ©€i €; icl €; i

that zgae] [ier 31'[ ¢l generates Msq,. We deduce that zgae] generates Ms,. The similar argument works for Ms,,. 0O

Proof of Theorem 7.2. 1t follows from the above lemma that M, is locally isomorphic to
C® (zgaeLDlaDQa ceey )@X/( ael+l D17D27 ;Dn) @X

where ¢ = dz—zll Adz2 A % A Adz, so that (, = zgae]g“. Since #°(C% ® Zx) by (7.26) is locally isomorphic to

22

Ca® gx/(tle +a1,Ds + s, ..., D, +an)@)(,

the multiplication S#°(C% ® Zx) - M, (4 ® P = (® zgae]P is well-defined, does not depend on the coordinate and
therefore, gives a filtered morphism

Vo 1 (HU(CL® Dx), FeH°(Co® Dx)) — (Ma, FeM,).

The surjectivity is clear from the local description. It follows that cc (%ﬂ Y(C® @X)) > cc(M,g). Summing over all
the rational numbers « in [0,1) gives

See(A°(Co® Zx)) 2 Y ce(Ma) = ce(M).

[e3

On the other hand, by Theorem 4.5 and Theorem 7.1, the Zx-module M is also successive extensions of #° (C® ® Zx)
for a € Qn[0,1). Thus,
S ee(HA#°(C2® Zx)) = ce(M).

e}

This forces that 1, must be isomorphism and therefore, filtered injective.

It remains to show that
(7.29) Fppg - FE%O(C; ® 9}() — FyM,,
[

is sujective. Suppose that zlae]P € Dx is a representative of a class in FyM,. Then we can write

foze]P P ZD Q; + [ae +1T

=1
for P' € Fp,,2x and T, Q; € Dx. It follows that

AN P —t,T)= P+ D@

i=1
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By the regular sequence argument of Theorem 4.5, we can assume that P —t,T is in Fyp,,Zx. Then the class
represented by P —t,T in #°(C% ® Px) is actually in F,#°(C% ® Px) by the local formula. Therefore, we find a

lifting represented by P in Fy#°(C® ® Zx) of the class of zgae]P in FyM,. We conclude the proof. O

Without loss of generality, we can assume by abuse of notation that locally I, = {0,1, ..., u} so that to = zo21---2,.
Let R, be the induced operator (R - «) on (M, FeM,). One easily gets a nice local formula of Ry:

Corollary 7.4. The endormorphism R, of My acts locally as 1)y 0 (id ® eizjaj) o (1ha)7t for any j € I,.

J

Proof. Because R — « acts on the left hand side of the identification (7.27) by the left multiplication by ézoﬁo -a,
the statement follows from

Rak®4”q=k®(;%@_a)@pdﬂ
J

:F®((;hmn—a)£““wfﬂ(;%aJ”

ae 1 . 1 -

=’(/Ja|:CZ£ ]®(zj(9j)] :wQO(ld ®zj8j)0¢a1 [Ca®1].
€j €j

This completes the proof. O

By the local formula of R,, it is obvious that R, : (Mg, FeMy) = (Mg, Fer1 M, ) is a filtered morphism.

7.2. Striness of R,. Similar to the reduced case, every power of R,, is strict.
Theorem 7.5. The power of the endomorphism R, on (Mg, FeM,,) is strict:
(7.30) R Fy My = Fo yROM,,  for any a € Zso and b e Z.

Let [R,] be the endomorphism on gr” M, induced by R,. To prove the above theorem, we need the following
statement on ker [R,] c grf’ M.

Lemma 7.6. ker [Ra]wr1 1s locally generated by monomials of degree p —r that divid t,,.

Proof of Theorem 7.5. Temporarily admitting this lemma, let R%"'m be an element in Fy,,.,;M,. Assume that
m € FyM,. If k > £ then the projection of R’*'m vanishes in grf, ., M,. It follows from the lemma that m can be
written as .

m= Y zymy+y D;Q;+m', for z;=]]z

#J=p-r, i=1 jedJ
Jel,

where Q;,m’ € F;,_1M,. Because for every J c I, of cardinality r + 1 we can arrange
1 1
RZJrlZJ: H ij@jZJ:ta H —8j :OEMQ
jelanJ €5 jelo €j
it follows that R""'m is equal to,
n n n
z R;+1ZJmJ+RZ+1(Z DiQier') = Z tamf, + z(Di+Oé)RZ+1QZ'+R;+1(m,— ZO&Ql)
i=1

#J=p-r, i=1 #J=p-r, i=1
Jcl, Jcl,

=R (m =Y aQ;) € M.
i=1
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But now m’ - Y7 aQ; € F,_1M,,. Tterating the above argument one can find m € Fy M, such that
R m = RU .

This completes the proof of the theorem. O

Proof of the lemma. The proof is essentially the same as the reduced case. Note that we are now working over the
commutative ring gr’’ Zx. We prove by induction on r. Let P € gr’’ Zx represent an element of ker[ R, ]"*!. When
r =0, we have

1 n
(731) —zoﬁoP = taQO + Z DZQ, recalling that to = 20”12y
€o i=1

Then ¢,Qo is in the ideal generated by 0o, 01, ...,0u, 24+10u+1, 2u+20u+2, -+, 260k, Ok41, ...0p OVer grf 2. Because
to together with Oy, 01, ..., Ous 2u+10u+1, 2u+20u+2, --os 260k, Oks1, ...On, form a regular sequence in grf 25, Qo can be
written as,

7 k n
Qo = Z 0aQa + Z 2,06 Qp + Z 0cQec-
a=0 b=p+1 c=k+1
Substuiting in (7.31)
1 Bty k F
—2000| P =Y. €a—Qa— Y. etaQs|€(D1,Da,...,Dy)gr Ix.
€0 a=0 Za b=p+1

Now because (z9dy, D1, D, ...,D,) is a regular sequence in gr’?x, P is a linear combination of t,/z, for a €
{0,1,...,u} and D1, Do, ..., D,, over gr’’ Zx. This concludes the case when 7 = 0.

Assume the statement is true for the case when the exponent is less than r. Because [R,] sends the class of P to
ker[ R, ]", by induction hypothesis we have

1 n
(7.32) — 290 P = Z 25Q  + Z D;Q; recalling that z; = H 5.
€0 #J=p—r+l, i=1 jeJ
Jcl,,
Fixing a subset J, then z;Q; is in the submodule generated by z, for a € I, ~J, 9, for be J, 2.0, for ce I \ I, and
Oq for d ¢ I over grf’ @x. Because the elements z,, 0y, 2.0, 0q for a € I, ~ J,be J,c e I~ I,,d ¢ I together with z;

form a regular sequence in grf’ Zx, we deduce that

QJ = Z ZaQa + Z abe + Z anch + Z acl62d~

aeloNJ beJ cel\I, del
Substituting in (7.32), we deduce that

%2'080 (P - (Z b 2Qp+ ¥ echQC)) - Y 272aQa

beJ #b ceI~I, aelong

is in the submodule generated by degree p— 1 +1 monomials dividing ¢, except z; and by Dy, Ds, ..., D,, over grf’ Zx.
This means we can reduce z;Q; one by one for each J on the right-hand side of the equation (7.32) and at the last
step we find that %zoﬁo(P— P’) is a linear combination of degree -7 +2 monomials dividing ¢, and D1, Da, ..., D,
where P’ is a linear combination of degree i — r monomials dividing t,,.

Note that the left multiplication by izoao has the same effect as applying [R.] on grf” M. Therefore, the class
represented by P — P’ is in ker[R,]" since degree p —r + 2 monomials dividing ¢, is in ker[R,]""!. By induction
hypothesis the class represented P — P’ is a linear combination of degree p—r + 1 monomials dividing ¢,. Therefore,
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the class represented by P in grf’ M,, is a linear combination of degree p —r monomials dividing ¢,. This completes
the proof. 0

Corollary 7.7. The ker R'*! is also generated by degree y—r monomials dividing t,, if one identifies M,, locally
with @)(/(ta, Dl, DQ, ceey Dn)-@X

The proof is the same as the one of Corollary 5.3

7.3. The weight filtration. Now the weight filtration of each generalized eigen-modules interacts well with the
good filtration because of the strictness. Recall that since R,, is nilpotent on M, it induces a Z-indexed filtration
WeM,. We filtered the sub-module W,. M, by the induced filtration F,W, M, = FoM N W,. M. Let

ker R7*1
ker R, + R, ker RI+2
be the r-th primitive part of gr'¥ M, with the filtration defined by
Frker RIY! + ker R, + R, ker RL?
ker R”, + R, ker R;,*2 '

Pa,r =

FZ/Pa,r =

As the formal proof in Theorem 5.6, we have

Corollary 7.8. The induced operator RL, : FygrY My — FpingtW M., is an isomorphism. Therefore, the Lefschetz
decomposition of gr"V’ M, respects filtrations, i.e.
FugrWMy= @ RLFe(Porioe for any re L.

£20,-

7.4. Summands of the primitive part P, ,. Recall that Y/ = Njes Y; and Y; = Ujes Y for any subset J of 1
and e; is the multiplicity of ¥; in Y. Like the reduced case that P, decomposes into the direct images of wys(-r)
for all index subset sJ of cardinality r + 1 (Theorem 5.7), the primitive part P, , of the generalized a-eigemodule
also decomposes into direct images of certain filtered Zys-modules V,, j(-r) for all J of cardinality r + 1 such that
eja for every j € J is an integer. The filtered %y s-modules V, j comes from cyclic coverings so that P, , carries
the Hodge theory of the cyclic coverings. In fact, by a well-know construction in [EV92, §3] the direct image of
the de Rham complex of a cyclic covering decomposes into log de Rham complexes of line bundles. A line bundle
with an integrable log connection also can be viewed as a log Z-module. This suggests that the Z-modules V, ; is
generated by a certain log Z-module ¥, ;. If Y is reduced and a =0, V, s is just wys. We shall construct auxiliary
log Z-modules 7, ; whose log de Rham complex will be used to construct the Z-module V,, s, without using cyclic
cover. The cyclic coverings are involved only when we study the Hodge theory of those Z-modules. We fix a rational
number « € [0,1) to simplify the notations and let I, be a subset of indices consisting of i such that «e; is an integer.

Denote by L the line bundle Ox (— Yiel., %Yi), where N is the greatest common divisor of e; for i € I,. In

this notation, Ox (~[aY]) = L2V (- Loz, [ae;Yi]). Because the line bundle &x (V') can be trivialized by a global
section, we get an isomorphism of ¢'x-modules:

(7.33) LN=0x|-Y eYi|-0x| > e
i€ly AV

Choose a local section I of £ such that IV = [T/« 1, %;“ under (7.33). Now we shall put a log connection V on

ﬁx<—[aY1>:£aN(— ) (aeim).

ielNIq
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First we define, using the product rule

N I dz
(7.34) NAGN AL S

N
! S

25

due to (7.33). Then, let s =N [T;e;ep, zi[aei] be the local frame of @x(-[aY]). Noting that aN is a non-negative
integer, the induced log connection works as

v 1N ieln .aei] I iz,
Vs _ (NHEIIQ?e]):O‘NVTJr [aei]z
S a X ae; . 2
(735) ! HZEI\IQ Z; ielNI,, ) .
25 2
= > (Jaei]l-ae) — = Y {-ae;}—,
ielI, Zi elNI, Zi

where {-} denotes the function of taking fractional part. Putting in more standard form,

dz;
Vs= > {—aei}—z ® s.
ieINIy Zi
This log connection is integrable and has poles along Y; for ¢ € I \ I, with eigenvalues {-ae;}. We endow the line

bundle Ox (-[aY]) with this integrable log connection V.

Fix a subset J of I, with #J =7+ 1 so that dimY” =n —r. The pullback of (0x([-aY]),V) by the inclusion
/Y7 - X gives an integrable log connection (7,V) = (%,.7,V) on Y/ with poles along E = E* the pullback of
Y71, - Moreover, the log de Rham complex of (¥, V)

{(V > Qyi(logE)® YV —» - - QY (logE) ® ¥ }[n—r],
induces a complex of Zy-s-modules
(7.36) (V0 Pys > Qyi(logE)® YV & Dys - = Qy7 (logE) @ ¥ @ Dy s }[n—r],

which is nothing but the log de Rham complex of ¥ ® Zy-s. It follows from Lemma 2.3 that the complex is a
resolution of
V= Va7j =def wYJ(IOg E) QY ® .@yJ.

(x7.)
We endow V with the filtration F;V = F;V, ; induced the subcomplex
{(V@FPys — Qyi(logE)®Y @ Frs1Pys — -+ — Q;L/_Jr(logE) QY ® Fuon—r Dy }[n—r].

It is clear that F,V is a good filtration. For example, if o = 0, then F is empty and ¥ is just Oy s so that V = wys
as Py s-modules. Since the eigenvalues of the log connection are in (0, 1) if poles exist, the log de Rham complex of
(¥, V) is the minimal extension R,V of the local system V consisting of the flat sections of V on ¥ over YINYry
(see [EV92, 1.6]). Later we will put a sesquilinear pairing on V and all the data will yield a pure Hodge structure of
the log de Rham complex of 7.

Lemma 7.9. The de Rham complex DRy sV together with the filtration FDRy-sV is isomorphic to the log de Rham
complex Q37" (log E) ® ¥ with the stupid filtration in the derived category of filtered complexes of C-vector spaces.
In addition, V is holonomic and the characteristic cycle of V is

CC(V) = Z [T;KUJYJ] .
KclINI,,
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Proof. We can choose the local frame s of ¥ such that

Vs = Z dZZ

ielNI, ~i

® {-ae;}s
where z; is the defining equation of E; for each i. Therefore, the complex (7.36) locally is the Koszul complex over
Py associated to the sequence

2101 + {—ae1}, 2902 + {—cea}, ..., xp0p + {—cep}, 0pi1, Opi2, ..o, Oner,

for some rearrangement of coordinates and under the trivialization of ¥ given by s. It follows that the associated
graded of (7.36) is the Koszul complex associated to the regular sequence

xlala 1‘282’ RS xpalla ap+1a 8p+27 ety an—’l‘
over gr’’ @y ;. Thus, the complex (7.36) is filtered acyclic. By the similar argument in Theorem 4.5, the Zy-s-module
V is holonomic and the charateristic cycle ce(V) = ¥ ger s, [Trros Y7 ).

Moreover, we have isomorphisms in the derived category of complexes of C-vector spaces:

F,DRY = Fp ., V® /\ Fya =~ @}T“(log EY®YV ® Frin-riers Dy s ® /\ o
~ Q;l,_,fﬂ'. (1og E) YV Q@ FpinrOyi.

Since FyOy s is Oy or vanishes if £ < 0, the complex Q7 **(log £) ® ¥ ® Fy,,_» Oy is the stupid filtration on the
log de Rham complex on #". We conclude the proof. O

We also need an auxiliary Zy-s-module V] ; to identify the primitive part Pq,, which plays the role as wy s (*D7)
in the counterpart for the reduced case (Theorem 5.7). The log de Rham complex of (¥, V) can be enlarged into
(¥ > Qys(logD)® ¥ — - » Q¥ (logD)® ¥ }n—r], for D=D" the pullback of the divisor Y7..

It is quasi-isomorphic to Rj,V for j: Y7 \Y; — Y is the open immersion. By the similar process of the above, it
induces a filtered acyclic complex of Zy-s-modules

(7.37) {(V® Dys > Qys(logD) @YV @ Dy — - > QYT (logD) @ ¥ ® Dy }[n—r].
Let V* =V ; be the 0-th cohomology of the above complex and endow it with the filtration such that FyV* = FyV] ;
is induced by the subcomplex
{V@FPys - Qys(logD) @YV @ Fpu1 Dys — - = Oy (logD) @ ¥ @ Fryn—r Dy Hn—r1].
We naturally get an induced morphism (V, F,V) - (V*, F,V*) from the inclusion of the log de Rham complexes.

Lemma 7.10. The canonical morphism (V,F,V) — (V*, F,V*) is injective, whose image is generated by the mono-
mials defining D — E.

Proof. Suppose z1x2---x) is the local defining equation of E and xixs---x4 is the local defining equation of D for
q>p+1. Since V is locally generated by the class of

p dl‘i

A

i=1 Tj

ANAdTpii A ANdTpr @501

and V* is locally generated by the class of

g diL’Z

A

i=1 L

ANdxgui A ANdE,, @501,
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dfi

i

the image is generated by the class of /\?=1 ANdTgi1 A AdTp_p ® § ® Tpi1Xpsa---L4. The morphism locally is

Dy s [(x101 + 71, .o, @pOp + T, Opit s oves Oner ) Dy s = Dy s [(2101 + 11, ., 2g0q + Tq, Ogat e, Oy ) Dy s,
with [P] » [Zp+1Zps2--x4P] where 11,72, ...,7, are the eigenvalues of V on ¥ and rpq =rpso = - =14 = 0. Since
Oy (logE)®V = F_(p)V = F_(.) V" = Q7 (log D) @ ¥/
is injective, by induction, it suffices to show that grf’'V — grf'V* is injective. Due to the complexes (7.36) and (7.37)
is filtered acyclic, the morphism on the associated graded modules works as, in the local representation,
et Dy s [(2101, s 90y Ot ooy Oy )t Dy — vt Dy [(2101, oy 240y Ot vy Oy )T Dy,

with [P] = [@p+1Zp+2---4P]. By induction on the number of components of D — E, we can assume ¢ = p+ 1. Let
P egr” 9y, represent a class in the kernel. Then

q n—r

(EqP = sz&PZ + Z 8]-Pj € ng@yJ.

i=1 j=q+1
Subtracting x,0,P, on the both sides yeilds
q-1 n-r
2o(P=04P) = Y. 2i0iP;+ Y. 0;P; egrt Dy

i=1 j=q+1

Since x4, 2101, ..., £g-10g-1,0g+1; ---, On—r is a regular sequence over gt Dy s,

q-1 n—r
(P - 8qPq) = Z xl&PZ' + Z 8JPJ’ € ng@yJ.
i=1 j

Jj=q+1
We find that P is a linear combination of 101, 2205, ...,2,0p, Op+1, ..., Op—r OVEr grf 2y.5. We conclude the proof. O

Remark 7.11. One can use Riemann-Hilbert correspondence to conclude that V is the minimal extension of ¥'|ys. p
and V* is the *-extension of ¥|y s p, which is overkill in our situation. The above argument also showed the strictness,
i.e., FgV = FgV* ny.

Putting in more general notations and summarizing what we have proved in the above two lemmas:

Theorem 7.12. The filtered Py s-module (Vq. g, Fe) is holonomic whose de Rham complex DRy sV, ; together with
the induced filtration is isomorphic to the log de Rham complex Q777 **(log E*7) ® ¥, 5 with the stupid filtration in
the derived category of filtered complexes of C-vector spaces and whose characteristic cycle is
ccWVas)= Y [TyxusY'].
KciI~I,,

The canonical filtered morphism (Va,7, FeVa, 1) — (V;J,F.V:;J) s injective and the image is generated by the
monomial defining the diwvisor D’ — E*7.

7.5. Identifying the primitive part P, ,. Now we are going to identify the r-th primitive part (Pu,r, FePau,r)
with a direct sum of V, j(-r) for J ranging over subsets I, of cardinality r + 1. The argument is parallel to
the one of the reduced case (Theorem 5.7), replacing M by M,, R by Ra, wys by Va.s, wys(*D”?) by Vo us
the complex Q?{/'A(log Y)ly by C2 = Q¢ (log Y)(-[aY])ly,, and the log de Rham complex Q};**(log D) by
Q7+ (log D7) ® ¥4, .

Theorem 7.13. Let Vo, =@ ;7{Va.s for J running over the subsets of 1, of cardinality v + 1, where 77 : Y7 - X

is the closed embedding. Then there exists an isomorphism ¢o r: (Pars FoPar) = Var(—1) in the category of filtered
Dx-modules.
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Proof. Because the log connection (7.33) we constructed on Ox(-[aY]) has zero residue on Y; for i € I,,, we have
the residue morphism between log de Rham complexes.

Resys : QX" (logY) ® Ox (-[aY])|y,. — Q377" (log D”) ® ¥4, 5, where D” is the pull back of Y7.;

for J c I, of cardinality r + 1, up to a sign depending on the order of the indices. Denote by B}, the log de Rham
complex Q%" (logY) ® Ox(-[aY]) of Ox(-[aY]). The residue morphism Resys extends to a morphism of the
complexes of induced Zx-modules

Resys : Blly, ® Ix - QY7 "(log D7) ® Ya,1 ® Dx.

Let HY be the /-th cohomology of Bily,, ® Zx. Then we have an induced morphism Resy s : HC -V s by taking
cohomology. Let Resa »=@®Resys : HY - V;J,(—r) where V; ;. =@,V ; for J running over cardinality r + 1 subsets
of I,. Because %n : QY /A (logY)(=[aY]) - Q%™ (logY)(-[aY]) also extends to the complexes of the induced
P x-modules, we obtaln a short exact sequence

dt
0— Cleo gy o5 By, @ Zx — Co®Px — 0.

The associated long exact sequence gives

(7.38)

Ra
dt
& AN/ y
M, > HO > 0.

By pre-composing /\ we get a morphism

dt dt
Resq,.j 0 7/\ Mo =V, . (-7),  [Ca® P]—[Res,, Iy A (o ® P].

[ae] ‘Zl A dzZ A A dz" A Adz, given that

locally I = {0,1,...,k}, and P € Zx. By Corollary 7.7, every class in ker R."! is represented by Ca ® 25 P for some
ordered index subset J of I, of cardinality +1 and J is the complement of .J in I,, and 25 = Hj 7 %j- Thus, its image

Recall that every element in M, is locally represented by (, ® P for (, = z;

under the above morphism only contained in the component V(’; 7(=7) because z7 vanishes on other components.
The image is the class represented by
dZO le de [ae

(7.39) Resa,J—A—/\---/\—/\---/\dznzl ]®zJP +
20 21 2k ZINJ

[ae]

where s, 7 is the local frame of 7, ; by restricting z;~ ' and the sign is depending on the order of J. It also
follows from the calculation that the image does not have pole along the pull-back of Y5. So it is contained in the
subsheaf consisting of classes represented by Qy7"(log E* 7Y@ Y47 ® Dx, where E*Y is the pull-back of Y7.7, so
that D7 — E*7 is the pull-back of Y5. This means that the image of the class represented by (7.39) is also in the
image of the canonical inclusion:

dzrag

/\dz,ﬁl Ao ANdzy ® 8,7 ®27P € QY ® 7, 7 ® Dx,

7 Vas(=1) = 7V5 5 (=1),

dzrg dzg dzrg
[dzg A e ANdzgg A Adzy ® Sa,0 ® P] — [—J A2 Adzp A Adzy, ® Sa,7 ® 27 P].
ZINI, 27 AN
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See Theorem 7.12. Therefore, the morphism ker R7! — V. (=) constructed above factors through Vi ,(-r).
Summarizing, we have the following diagram.

Pa,r

kerRZ;'l ittt ” V(x,r(_’r)

L, [

LA Resq r
My —— HO —5 Vo r(=r)

In fact, the kernel of p, contains ker RJ,: for an element in ker R, locally represented by (, ® zx P for K a subset of
I, such that the cardinality of I, \ K is 7, its image under p, , is zero because zx annihilates all Q@}T(log D’ )® Yo g
for any J c I, of cardinality r + 1. The morphism p,, , also kills R, ker R".** because %/\ vanishes on the image of
R, by (7.38). It follows that p,, factors through a filtered morphism

ker R7H
ker R?, + R, ker RT+2

¢a,r : Pa,r = - Voc,v"(_r)'

For dz5 A L2 FUUN dzpe1 A AN dzy ® 5,5 ® P e QY (log E*7)® ¥, ; ® F;Px representing a class in Fyr/V, 7(-7)

ZINIq
where J c I, of cardinality r + 1, we can find a lifting represented by (, ® 2P in Fy ker R’ which means

Frker R = Fpoy Vo

is surjective, i.e. the morphism ¢, , is filtered surjective. It remains to prove that ¢, , is injective. We prove that
®a,r is an isomorphism by counting the characteristic cycles as in Theorem 5.7. Because ¢, is surjective, one gets

cc(Par) 2 cc(Va,r).
It follows from Corollary 7.12 that

cVar)= ¥ c@Var)= LY [HanXl= Y [TEX].
Jcly, Jcl,, KcINI, Jcl,
#J=r+1 #J=r+1 #JInIo=r+1

One the other hand, by the Lefschetz decomposition and Theorem 7.2,
M H(I L) [Ty, X] = cc(My) = ce(grV M,) = Y (r+1)cce(Pay) 2 Y, (r+1)cc(Va,r)

Jcl >0 r>0
=Y Y (r+D[X]= Y #(n ) [Ty, X].
r>0 Jcl, JeI
#JInIo=r+1

It follows that all inequalities above are equalities and in particular,
cc(Par) = ccVar)

from which we conclude that ¢, , is an isomorphism between the underlying Zx-modules. Plus it is filtered surjective,
we conclude that ¢, is filtered isomorphism. O

8. NON-REDUCED CASE: SESQUILINEAR PAIRING AND LIMITING MIXED HODGE STRUCTURE

8.1. Kahler package of cyclic covering. To accomplish our goal, we need to show that the sum of all hyperco-
homologies of the complex

03, (log E“7) @ ¥4 g[n—r]
has a polarized Hodge-Lefschetz structure and hard Lefschetz so that the hypercohomology of the de Rham complex
of the primitive part P, , will inherit the properties by Theorem 7.12 and Theorem 7.13. For this, we need to use
the geometry of cyclic coverings.
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We first give another description of the integrable log connection (7.33) using cyclic coverings. Fix a rational
number « in [0,1), Because the isomorphism,

cN:ﬁX(—ZeiYi)»ﬁx( )y eiYi)v

i€l el

we obtain a cyclic covering 7, : X, — X by taking the N-th roots out of Y,;.; €;Y; and normalizing it. The direct
image 7, Ox, decomposes into eigenspaces with respect the Galois action as well as the direct image of exterior
differential 74, Ox, = 70 Qx, [EVI2, Theorem 3.2]. The line bundle

Loy - Z [ae; Y]],

ielNIq

is the a-eigenspaces of 7., Ox, for some suitable choice of a generator of the Galois group. Because the decomposition

respects the exterior differential, we obtained an integrable log connection with eigenvalues {ae;} along Y; for each
i € I,. Note that X, might not be smooth.

Let J c I, of cardinality  + 1. Since Y/ is not contained in Y71, the fiber product YO;] = X, xx Y7 is again a

cyclic covering of Y/ by taking the N-th roots out of Yiela, €iYi N Y. Let 7 : Y/ - Y7 be the second projection.

Y] — X,

(8.40) | lﬂa

J
Yy, T — X
We conclude that (¥4,, V) is the a-eigenspace of Wg*(ﬁyo“] ,d). The log de Rham complex of (%, V) is a summand
of the direct image of the de Rham compolex 7 ST of \ 5

We shall work in the general setting and adopt the convention in [EV86] and [EV92]. Let £ be a line bundle
on a Kahler manifold Z with a Kéhler form w and D = };v;D; be a simple normal crossings divisor such that for
some N > 1 one has £V = 07(D). Define £1) = Ej(—[%J) for 1 < j < N-1. One puts an integrable logarithmic
connection on £) with poles along DY), where

DW= Y D,

Vi

ez

Let ¢ : U = Z be the complement of D and V is the underlying local system of L|y. Let 7: Z' — Z be the cyclic
covering obtained by first taking N-th root out of D then taking the normalization and 7 : Z — Z' be a log resolution
of singularity equivariant with respect to the Galois group Gal (Z’/Z) = (o) and let E be the simple normal crossing

exceptional divisor.
n

37 g iy

Note that Z is Kahler because it is a resolution of subvariety of the geometric line bundle of £, which is Kéhler,
although the induced Kihler class does not relate well with w on X. The pullback n*w is only positive over U = n~!(U),
but one can still cook up a Kéhler class by adding a small multiple of the first Chern class © € H 2(Z,7(1)) of the
relative ample line bundle of the projective morphism 7 : Z — Z’. We can assume O is invariant under o by averaging
it.

Lemma 8.1. Notations as above, the cohomology class [n*w]+ A(27/~-1)"10 e HYY(Z) n H?(Z,R) is an invariant
Kdhler class for A is a sufficient small positive number.
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Proof. Let D; be the strict transformation of 7~(D;) and s; € H*(Z,03(D;)) whose zero locus is D;. Let h; be a
Hermitian metric on each line bundle &;(D;) and p; be sufficient small positive bump function supported in a small
neighborhood of D; for each i. Then the (1,1)-form

N w+ Z %agmhi(si, Si)

is positive on Z — E but only semi-positive over E. However, the class (2m/~1)71O is positive over E. Therefore,
for A sufficient small positive, the class of

n w+ Z 2£7T185pih¢(8i7 si) +A(2mV-1)7'0

is a Kihler class. But ddp;h;(s;,s;) is exact. The cohomology class of above just equals [n*w] + A(2m/~1)71© in
HY(Z)n H?*(Z,R). It is invariant because both [n*w] and © are invariant. O

Lemma 8.2. The hypercohomology H* (Z7 Q3 (log DW) ® L’(j)_l) is a summand of £ -eigenspace of H*(Z), and
thus it is a sub-Hodge structure of weight k.

Proof. Tt follows from (1.6) in [EV86] that RV, R,V and Q% (log DY))e LU )™ are all quasi-isomorphic. Taking
hypercohomology gives canonical isomorphisms

H* (2,95 (og DD) @ £y « HF (U, V) = H*(U, V).

Because 7 is étale over U, H*(U,V7) (resp. H*(U,V7)) is a &-eigenspace of H*(U,C) (resp. H*(U,C)) for the
cyclic action o, where £ is a N-th root of unity. Then the canonical morphisms of mixed Hodge structures

(8.41) H¥U) - H"(Z) - H*(U)
respect the eigenspaces decomposition because we make Z equivariant. We complete the proof. ]
Lemma 8.3. Let X = 2n\/—1L where L = [w]A is the Lefschetz operator on Z. The following two statements hold:
(1) Hard Lefschetz is valid on the hypercohomolgy, i.e.
Xk . preim 2k (Z, Q% (log DV) ® c(ﬁ_l) s fdimZ+k (Z, 0% (log DV) ® c(ﬂ_l) (k)

s an isomorphism of Hodge structures.

(2) The pairing

s 8(dHnZ + k + 1) i ’I’}* (XdimZ—k
(27-[-‘ /_1)d1mZ A

is a polarization on the primitive part of H* (Z7 Q% (log D(j)) ® E(j)il), where n* (Xdimz_ka /\B) is the top

(8.42) (m/,m"") m' Am”)

form determined by the inclusion n* Q4™ (log DU @ E(j)_l Cwy.

Proof. Let L = [*w + AO]A be the Lefschetz operator on Z. Then the Hard Lefschetz on Z says
>~<k . HdimZ—k(Z) N HdimZ+k(Z)(k)
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is an isomorphism, where X =qet 2m/—1L. Because L is invariant and respects the morphisms in (8.41), the above
isomorphism is compatible with eigenspaces decomposition, it follows that

(8.43) Xk gdimZ=k (Z, Q% (log DY) ® N)*l) - fdimZ+k (Z, Q% (log DY) ® N)’l) (k)

is injective by Lemma 8.2. In fact, the ¢'-eigenspace of Hf(U) is orthogonal to the &’-eigenspace of H?dim Z_k(U)
with respect to Poincaré pairing unless i+j = 0 (mod N): for a in the &*-eigenspace of H¥(U') and b in the &7-eigenspace

of H24mZ=k(T]) then
gifaAb:[a*aAb:[aA(afl)*bzgfjfaAb,
U U U U

which means [;a A b is zero unless i + j = 0 (mod N). It follows from Poincaré duality on HE(U) x H?4mZ-k(T7)
that the &-eigenspace of H*(U) is Poincaré dual to the £ *-eigenspace of H>4™Z-%({7). On the other hand, since
the ¢’-eigenspace is complex conjugate to the £ *-eigenspace, the &‘-eigenspace of H, f((j ) and the ¢'-eigenspace of
H?dimZ-k(77) have the same dimension. It follows that the morphism (8.43) is an isomorphism.

The operator L has the same effect as n* L over H, ;(ﬁ ), because © is supported on E. Therefore,
Xk ; ptim 7k (z, Q% (log DD) @ c<ﬂ'>’1) s plim 2ok (z, Q% (log DD) @ ch) (k)
is an isomorphism. We conclude (1). It also follows that n* identifies the primitive part of X

HimZ-k (Z, Q3 (log DY) dﬂ’)‘l)

prim
with the primitive part of X

ker (Xk+1 . gdimZ-k (Z, Q% (log DY) ®£(j)‘1) y pdim Z+k+2 (Z, Q% (log DY) ® E(j)—l)) .

Thus, Hg;ﬁ;lz‘k (Z, Q3 (log DU ®E(-j)_1) is a sub-Hodge structure of Hgﬁ;ﬁlZ—k(Z). And the restriction of the

polarization is again a polarization. This proves (2). O

The above two lemmas indicate that the sum of hypercohomologies

@ H* (Z, Q% (log DY) ® £(j>‘1)
keZ

is a polarized sub-Hodge-Lefschetz structure of @je; H* (Z ,C). In practice, it is more convenient to make the
polarization independent of the resolution of singularities and intrinsic on Z. Heuristically, the local system V=7
over U inherits a pairing from Cj; and it has a Hodge theoretic extension on its canonical extension. First, we can
resolve % (log DY) using A% (log D), the complex of €*-forms with log poles along D). Note that we have
the inclusion of sheaves

AdmZ+k (o0 D)) @ L) A ASmZ K (1og D)) @ £LG) ! ¢ AZIMZ g £ (D)) ® LO N (DW).

Since LY ~ ¢ 4(D), picking local section of I such that IV =[], x;”" we can put a canonical singular Hermitian metric
on L by setting the weight function as

Tl /N y : : ,
K3
[l =TTzl , where z; is the local defining equation of D;.
i
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Then the induced singular Hermitian metric on E(j)fl(D(j)) = E’j([%J + D) locally is

l_jnxi—ljm/NJ H xi—l =H|$i‘j”i/N_U”i/NJ H |xi|_1:H|$i|_{_jVi/N}.
' L JuiNez i

For any smooth top form Y with values in C(j)_l(D(j)) ®c ®LW) (D) we can associate an integrable top form
(T)n = fgls|2 vol(Z) by fixing a volume form vol(Z) on Z and writing locally T = fs ® gsvol(Z) for s a local fram

of LU )_1(D(j )). Therefore, we obtain a well-defined pairing,

e(dimZ+k+1) (Xdimz_k

. =1 . -1
8.44) A% (1ogDU)Y @ £U) " AAE(log D)@ L) - C, (m/,m") ,
(8.44) AZ(log D¥?) % (log D)) ( ) (any/ T)imz Js

m'/\W)h.

Since 7 : Z — Z is generic finite, it follows from
[ 0 (XA 2! A ) = N/ (xdimZ—km//\W)h
Z z

that (8.44) induces the same polarization in the statement (2) of the above lemma except for the constant N.

Applying to our situation yields that 77, 7(E*7)Y carries a canonical singular Hermitian metric | - |, with local

weight functions [T;e/;, |zj|’{aej} restricted on Y7, where z; is the defining equation of Y;. Provided the above two
lemmas, the sum of hypercohomologies

@ H* (v, 035 (log B ) © 4,1
keZ

is a polarized Hodge-Lefschetz structure of central weight dimY” for any non-empty subset J of I,. Similarly
to Example 2.9 this is also determined by the filtered Zys-module (Vg 7, FoVa,s) with the sesquilinear pairing
Sa,7 Va,7 ®c Va,;7 = €y is given by

e(dimY” +1)
(zﬂ\/__l)dimYJ

for local sections of V, ; (see (8.40)) represented by s; ® P; such that s; local sections of

(8.45) (ls1® P, [s2® P2) | (PP) (51 53),

wys (log E*7) @ ¥4 1 = wys ® ¥4 1 (BT

and P; is a differential operator i = 1,2. Here, (s1 A $3)p, is the top form induced by the singular Hermitian metric
on ¥, 7(E*”7). Summarizing the results we proved in this subsection:

Corollary 8.4. With notations as above, the direct sum of all hypercohomologies of the de Rham complex of
(Va,us FoVa,s) underlies a polarized Hodge-Lefschetz structure of central weight dimY’ with the Hodge filtration
induced by FJVy j and with the polarization, on degree k, given by the following induced pairing scaled by e(k),

H*(Y7,DRy1Va,7) ® H*(Y7 DRy Vs 5) — H(Y7, DRy, 37Va,s ®C Va,7) Say H°(Y’7,DR,,, 7¢ys) = C.

Remark 8.5. We cannot make the Hodge structure in the above corollary over Q because there is no eigenvalue
decomposition of Q-structure.
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8.2. Sesquilinear pairing. As in the reduced case, we need a sesquilinear pairing to construct the limiting mixed
Hodge structure. In fact, the construction for the reduced case still works with a little modification. Note that for

any test function 7 over a local chart U and two local sections (; ® P;, (s ® Py of H° (U, %/ (logY)(-[aY]) ® @X),

the function
e(n+1)

(QW\/_ "

may have order approximately at most [¢** (—1og |t2|) near t = 0 where k + 1 is the number of components of Y7
that intersect in U. This suggests that we can define the pairing S, on M, by
e(n+2)

(QJ—WHfIWR%WFwQAfA@

:Ress:_a 5(2) f||29dt dt((;((l;—_l)nf PiP(n)C1 /\C2)

Again, we have not check that S, is well-defined but let us do some local calculations to see what is going on.

f PPy ()1 A G

(Sa([Cl ® P1]7 [CQ ® PQ])777> =def Ress:—a

Example 8.6. Suppose Y = 2Y; for Y; is a smooth manifold and ¢ is equal to 23 on X. Then R satisfies the
equation R(R - %) = 0. We deduce that M has two eigenspaces Mo and M1 by (4.19). Then for any local sections
GO®P;, =dzy Adzo A Ndz, ® Py of Q’;(/A(log Y)® Zx, i = 1,2 representing classes of My, the calculation of the
pairing So([¢1 ® P1],[(2 ® P»]) is exactly as in the reduced case and as it turned out

So([C1® P1], [C2 ® P2]) =iy, Sy, ([(1® P1], [(2® P2]).

By Theorem 7.3 M 1 is locally generated by the class represented by dz; A dzo A+ Adz, ® z5. Now for any local
sections ¢ ® zoP; = dz1 Adza A+ Adz, ® 2o P; representing classes of M%, we have

(S1([C® 2], [C®2P2]),n) = Res,_ f|Zo| Plpz(ﬁ);\(é?dZiAdZ)

n (/T
f log | 2029000 P1 P2 () /\( 5 dz; /\dzj-)

by Poincaré-Lelong equation [GH14, Page 388] = /Y §P1P2(77) /\ ( dz; A dZ)
0

= Sl 5w (G e il [G 8 ).
= %(Z’YO+S%,{O}([<1 ® 20P1], [(2 ® 201%2]),m),

Recall S1 (o) defined in (8.45): since we have the isomorphism Oy, (2Yy) = Oy, (Y) ~ Oy, there exists a canonical
singular Hermitian metric (this case is smooth) | - |;, on Oy, (-Yy) by setting the local frame zp has norm 1 so that

iv0,+ 51 10y ([C1 ® 2011], [C2 ® 20 P2]), ) = fx 2007 P1 P2 () /n\ (\é—_lei Ad?i) = iyvy, Syo ([C1 @ P, [(2 ® P2]),m).
i=0 T

The above equality can also be explained as follows: the cyclic covering constructed by taking out of the second root
of the constant section of Oy, (2Yy) ~ Oy, has two connected components and each component is isomorphic to Y.

Let 1 be a test function over an open subset U. For any two sections my,mo € HO(U, Q% /A(log Y)(-[aY])® Px),

the (2n + 2)-form % A m; A d— Amg is smooth of outside Y and has pole along Y. Locally, the (2n + 2)-form just
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is |z7[?lee P1P2(77 EACA dt/\C, where m; = C®Z§ae]Pj for ¢ = %A%/\"'/\%/\"'/\d«zn and j = 1,2. Let
F(s)=F(s, ml,mg, 1) be the meromorphic extension of

ot J G A A S et

via integration by parts. The function F(s) is well defined when Res > —a and has a pole at s = —a. We only care
about the polar part of F(s) at s = —a.

Theorem 8.7. The polar part of F(s) at s = —« is only depends on the classes of m1 and ma in M.

Proof. Let {px} be a partition of unity of the open covering {Uy} by local charts. Then

e(n+2) dt dt

Fs)-y 2= f 7 Ama A S Ama(pan).
A (27‘(‘\/—1) Ux

Since pan is a test function over local chart Uy, we can assume U itself is a local chart. We assume k+ 1 components

of Y intersect in U.

Lemma 8.8. Under the assumption that m; = (, ® P; for (, = zgae] dzzll A dz2 A A % Adzge1 A Adzy, and for
1=1,2, the followings are valid.

(1) the order of the pole of F(s) at s = -« is at most k+1;
(2) if P, =t,P] for one of i = 1,2, then F(s) is holomorphic at s = —«;
(8) for 0<j <k we have,
1 .
F(S,CQ®P1,Ca®ezj6jP2,n) = (S Coz M
J

Z]8P1,CQ®P2 ’/]) —(8+ ..
J

)F(8,<1®P1,<2®P2,’I7)-
J

Proof of the lemma. We work out Laurent series of F(s) at s = —a:

F(s) = / |Z |2se+2[ae 21P1P (77)/\(\/_

dZi A dZ)

St )e—s- (o3
:AMW+”WMNQH&WAU dz A d)

f (5 + ) 2kt 5 2(sra)e '/\( dzz/\dzﬁ) where 7’ = 9;0; (|21| {-ae }P]_PQTI)

_ Z g'(S+OJ)K 2(k+1) f (10g|2«'1|2e)e77’ /\( le /\dZ)
When ¢ < k + 1, then the form
(log |21[**) ' /\( de A dz).

is actually exact because one of the a; must be zero in the expansion of (log|zr|*®)* into the linear combination of
e, (log |z¢|2"‘7")al such that Y% a; = £. Therefore, the order of the pole at s = —a is at most & + 1.

When P =t,P], the form

|Z |2(s+a)e 21|Z |2{ ae}t P1P2(77)/\( de/\dZZ)
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is integrable when s = —« where {-ae} is the multi-index such that {-ae}; = {-ae;}. Therefore, F(s) is holomorphic
at s = —a. It is the same when P = ¢, Py.

Lastly, by linearity we can assume that P; = P, = 1.

1 c(n+2) o 1—— \dt dt
F(5,608 1, e 2y m) =D e (L) 2 n %o,
(5 C C ejzj J 77) (27T\/—_1)n+1 X|| (ejzj 177) P /\C A 7 /\C

n

Se; ae;[— 1 Se; Qe V _1 —
:f H |Zi|256i+2[aei]_2zj jt[ae;] 1723 5+ J]@On/\( dz; /\dzi)
X s\ ' €j =0 27
016] 2se +2 ae
(8.46) =f_( )Hlll A( MAM)
X iel

~ [ce;] e(n+2) 25 dt
_—(S+ e; )(QF\/Tl)n+1f|| */\Coc t A Ca-

-- (s+ W)F(&@@L@ ®1.7).
€j
The other equality in (3) holds similarly. We complete the proof of the lemma. O

Returning to the proof of theorem. Since M, is locally represented by
Ca® Dx[(ta, D1 +a1,Da+Qg,...,Dy + ) Dx
(see the proof of Theorem 7.2), and (2) and (3) in the lemma say that when one of m; and ms is in
Ca® (ta, D1+ 1, Do+ g, ..., Dy + ) Dx

then F'(s) is holomorphic since a; equals [ae;|/e; — [aeg]/eo for 1 <<k and equals zero otherwise. O

For two sections 71,72 € H°(U, M) and any test function 1 over U, we define the pairing S, : My ®c M, = Cx
by
(Sa(71,72):m) = Ress=—a ) F(8,51, 72, pAN),
X

where {p,} is a partition of unity with respect to an open covering by local charts {U,} such that ~; has a local
lifting of 4; over Uy for i = 1,2. It is obvious that S, is & w-linear. Thus, it is a sesquilinear pairing. As a corollary
of Lemma 8.8, we have

Corollary 8.9. We have S, o (id ®c Ry) = Sq 0 (Ro ®cid).

Because of the corollary, the sesquilinear pairing S, induces pairings on the associated graded quotient of the
weight filtration

Sa : ngVMa ®c ng_/IgMa - Q:Xa
as well as on the primitive part

PRQST =S,0 (ld Rc RZ) ZIPOC,T ®c Pa,r - Cx.

Theorem 8.10. The isomorphism ¢q.r : (Par, FoPar) = Va,r(—1) in Theorem 7.13 respects the sesquilinear pairings
up to a constant scalar. More concretely,

_ -n"
PRaSr(mlamQ) = Jg?w (7“+1)!CJT+ Sa,J(¢a,rm1»¢a,rm2)

#J=r+1
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for any local sections my,ma € Py and Cj = T1jc; €5, where the pairing Sq. j : Va,1®cVa,1 = €y is defined in (8.45).

Proof. Because of the linearity and the generators of P, , are all monomials dividing ¢, of degree y—r Corollary 7.7,
it suffices to prove the theorem in the case when m; is represented by

dz1 dzy
Ca® 2K, = zgae]— Aee A —— A ANdz, ® 2K,
21 2k

where K; c I, with #K; = u—r and ¢ =1,2. Let n be a test function over U. Then we have

(Sa(mi, RL,m2),n) = Resse—a (- (s+a))”f |zg|?oet a2, s /\( dzl/\dzl).

If my # mg, then the above is zero. Indeed, for v € K ~ K by choosing Rf, =1 ® [Tier k< {0} e%_ziai,

tai.« N V _]- —
(S(RLm1,m2),n) = Ress——q /X |zl|25972'1|21|2[°‘e]—zvn A( dz; A dZ;)

Zy =0 2T

where 7 = C;}Kl\{U}BI\KI\{U}%(Tv)fln is a smooth function with compact support. The function

t -
A|ZI|25e 21| 2[ae] 06777

’U

dzz A dz)
is holomorphic at s = —a because by setting s = —« the form

ae— a—~ ae 1Zv~ V-
|21 2022 /\ dzz/\dzz) lers, [P0 =2 A

dZ,' A dZ)
is integrable.

Therefore, we reduce the proof to the case when my = ms = m represented by (, ® zx. We shall prove that

. _1 T —
Sa(m, Rym) = MTFSQ,K(¢a,rm,¢a,rm),

where K is the complement of K in I,. Without loss of generality, we can assume that K = {r+1,7+2,...,u} and
K ={0,1,...,r} so that zx = zy412p42-2,. We have

(8.47) (S(m, R,m),n) = Resse—a (- (5+a))’“/ |z [P5re)ex| 5 | Poerrt2laenk] /\( dzl/\dzﬁ)

where, for any index subset J c I, the j-th component the multi-index e is e; if j € J or zero otherwise7 and the
j-th component of [ae ;] is [ae;]| if j € J or zero otherwise. Integration by parts for {dz;,dz;} the identity (8.47)
equals to

€K

r |ZI |2(s+a)e1m 2ser. 2[aer. AV -1
(848) RGSS=7(X(—(S+04)) /);_ Wl [\[Q| e, +2[aerg, (a? ,,7) Z:/\O(Wdzl A diz)
(-1)" / 2(s+ar) “2{ae;} (A A
8.49 Py — T C I o P Lo ndz
( ) €S, « 02—(8 + O[)T+2 x | | SN |Z]| ( KT]) A( Zi z )

where a?@( = I"[jE % 0j 8 Because of the expansion

= (log |t ¢
|t|2(s+°‘) = exp (log|t|2 (s+a)) Z (og| i ) (s+a) ,

~
o
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we find that (8.49) is equal to

(8.50) s [ g™ TT a2 (95 A
2 G D)

gelNI,, i=0

le' A d?Z)

The expansion of (log |t|2)r+1 is a linear combination of
[T (toglzf*)"
iel
for all partitions ¥ ;.; a; = + 1, but the differential form
a; olaes — \ v, V-1
[T(ogl=)" T1 Izl (9x9rn) \(55~dei ndz)

iel jeInIn

is exact unless a; # 0 for any i € K, which is equivalent to a; = 1 for i € K and a; = 0 for i ¢ K. It follows that (8.50)
is equal to

(-1 f 2 ~2{ae; T\ A
— log | 2] 25|72 (90 /\ d,zz AdZ).
Cr(r+1)! Jx jl} ’ jeg,u ! (Or0) i=0
We deduce from Poincére-Lelong equation [GH14, Page 388] that the above continues to equal to

(8.51) _CDT T ety A

(r+DICx% JYy= ;1, i=r+1

Y _1dzi A dZ)

Since ¢, zm = id;;%}f ANdzger A Ndzn ® 5, 77 € wY?(E""F) ® 7, % it follows that

(So M APy iemn= [ Iz A (5 dzl A dz;)

jelNI, i=r+1
from which we conclude that (8.51) is equal to
Ly Ly
(r+1)ICx (r+1)ICx
See (8.45). The theorem is proved. ]

T](¢a KmA¢a Km)h <Sa’f(¢a’?ma¢a’fm)7n>'

8.3. Construction of the limiting mixed Hodge structure. We begin to construct a polarized bigraded Hodge-
Lefschetz structure on gr'V H*(X,DRxM,). Fix a Kihler class w on X and let L = wA : DRx M, - DRxM,[2] be
the Lefschetz operator and X; = 2mv/=1L. Relabel the graded pieces of the first page of the weight spectral sequence
by

Ve, = H' (X, gr)/ DRx M) = W gtk
Let V' = @y ez Vi), with the filtration F,V< induced by Fy M. Denote by E;(R,) the induced operator by R, on
WE, and let Yy = E1(Ry). Denote by Sy the induced pairing on Vi% ®m

H(X,gry DRxM,) ® H(X,gr'" DRx M) -~ H'(X, DRy xar)’ Mo ®c gt M) > H)(X, DRy €x) = C,

modifying by a sign factor (£). Let d; be the differential of the first page of the spectral sequence. In terms of
relabeling we have
dy : (Vzo,lkaF-Ve(,yk) - (Vﬁl,k—laF-Vﬁl,k—ﬂ-

Exactly same to Theorem 6.6 and Corollary 6.7 in the reduced case, we conclude that
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Theorem 8.11. The tuple (V*,X1,Y2, F,V,@® S} 1, d1) gives a differential polarized bigraded Hodge-Lefschetz struc-
ture of central weight n.
Corollary 8.12. We have the following

(1) Hodge spectral sequence degenerates at pEq;

(2) the weight spectral sequence degenerates at WEz;

(8) the tuple (@pezgr™ H (X, DRxM,),X1,Ya, F.) together with the pairing induced by S is a polarized bi-
gradged Hodge-Lefschetz structure of central weight n.

The last statement in the above corollary implies that the induced weight filtration on H*(X,DRxM,) is the
monodromy filtration associated to R, on H Z(X ,DRxM,). We established Theorem A.

9. APPLICATION

9.1. Hard Lefschetz. The following is a consequence of the bigraded Hodge-Lefschetz structure

Theorem 9.1. The Lefschetz operator induces an isomorphism between Oa-modules
(271'\/—_1L)k : FgR_kQ;;r/”A(log Y) =~ Fy_ RF ;;'/"A(log Y) for any integer L.

As a result, we have the following decomposition in the derived category of coherent Oa-modules:

Rf.F, 3;'/”A logY) =~ EBFngf* /A(log Y)[-k] for any integer L.

Proof. The first statement follows from the Hard Lefschetz on each fiber

k
(27r\/—1L) : FeR™MOYT (log Y) © C(p) = Fr_ R Q%74 (log V) ® C(p),

for every p € A. The second statement follows from the first one plus the main theorem in [Del68]. ]

9.2. Invariant cycle theorem. Now we shall give the proof of Theorem B, which is equivalently to the following
statement:

Theorem 9.2. We have the following exact sequence of mized Hodge structures

HY(Y,C) — H'(X,DRxM) & H'(X,DRxM)(-1).

Of course one can try to show that ker R is the filtered Zx-module such that the hypercohomologies of its de
Rham complex computes the cohomologies of Y. But we would like to keep the proof elementary so we will just show
that the first page of the weight spectral sequence computing the hypercohomology of DR x ker R is the same to the
one computing the cohomology of Y up to a constant scalar; this will prove the theorem because both weight spectral
sequences degenerate at the second page. See [GST75, (4.2)] or [Ste76, (3.5)] for the weight filtration of H*(Y,C)

Proof. Note that kerR is contained in Mg. Therefore, W_;kerR = R7’ker R7** for j > 0 and vanishes for j < 0 where
W =W(R) on My. It follows that grY[J/-kerR is isomorphic to wy (41 for j > 0 by Theorem 7.13. Because gr‘_/‘gkerR
is a summand of grk‘;Mo for j > 0 by the Lefschetz decomposition on gr'¥ M, we have the following short exact
sequence of Hodge structures on the first page of the weight spectral sequences:

0 — H**(X,gr%_DRxkerR) — H**(X,gr!_DRxMo) &> H**(X, g% _, ,DRxMo)(-1) — 0.

j—2—e
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The associated long exact sequence gives the relation between the second page of the spectral sequences:

- — gr'™ HY(X,DRxkerR) — gr’ H*(X,DRxMo) — gr' ,H*(X,DRx Mg)(-1) — ---.

Now it remains to prove that H*(X,DRxkerR) and H*(Y,C) are isomorphic as mixed Hodge structures. It
suffices to check that they coincide at the first page of weight spectral sequence since they degenerate at the second
page. We have the following commutative diagram where the leftmost column is the E;-page spectral sequence of
kerR and all the horizontal arrows are isomorphisms of mixed Hodge structures.

o(RI)1 ) o .
HY(X, e DRxkerR) 205X DRI g ) o HU(VEHD, Qriite)

Y (G+1)
(9.52) ldl l l

H" (X, grsz)DRXkerR) —2 5 H"Y(X,DRx7! Wy ea)) ¢ HZH(?(ﬁQ)vQ;ﬁzl)“)

We shall identify the the rightmost vertical arrow with the differential of the first page of the weight spectral sequence
of H'(Y,C) via diagram chasing.

gr’ ker R® AP Tx = s TKwyx @ AP Ty ¢ QUi
Js | |
-1 o Kn{j: 1 i
grz]#l) ker RON T Tx ——— @j,es Ty U }WYKm{ji} BN Ix —— Djey ngn{’;i}
[iRjC0®ZIZ;(1 ®8J] y +dzg ® 0y 4 dzi

I l |

[£R7 G0 © 5j.eg €j 212127 ® pngyny] — @jes#dzg ® 0y gy ¢ £ g dzgay

Starting from the upper-right corner, let dzz. ; = A;cz s dzi be a local section of Qg}jfp where K is an ordered index
set of cardinality j + 1, K is the complement of K in I and J c K of cardinality p. Then +dzz ® ; is the image in
7Kwyx ® AP Ix via the inclusion

. p p
Q?}g P = Wy K ®/\yyk —>T+I(WyK ®/\yx,

where 07 = A\jc; 0;. Its preimage under the isomorphism

o p , 4 p p P
oK © (R’) ! :gr}”kerR@ N\ Ix = RikerR"" @ \ Tx » Po_; ® )\ Tx - Ewyx ® \ Tx

dz1

is the class represented by +R’( ®zlz;(1 ®3dy, where (o = LENN ;11 A A dz% Adzji1 A+ ANdzy, and Py _; is the (—j)th-

z0
primitive part of gr'¥ My. It maps to the class of +R/*1(y ® Yiied ejizl(z;(zji)fl ® 0j.(j,y by the differential of
DRxkerR. By reverse th'elabove procedure, +R7*1¢y Y jied €h; Z](ZKZji)_l ® 0.y, corresponds to =¥, ;€. dzg. s
restricting on @, 400, -
identified with the pullback

Therefore, the morphism d; in the diagram (9.52), up to a scalar factor, can be

HY (f/(jﬂ)’ ert—(f:)) Lt (?(]42)7 Qg-(f:)“) 7

which is the differential of the "V Ey-page of H* (Y,C). This completes the proof. |
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