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Abstract. We show that if Z is a locally complete intersection subvariety of a smooth
complex variety X, of pure codimension r, then Z has k-rational singularities if and only
if α̃(Z) > k + r, where α̃(Z) is the minimal exponent of Z. We also characterize this
condition in terms of the Hodge filtration on the intersection cohomology Hodge module of
Z. Furthermore, we show that if Z has k-rational singularities, then the Hodge filtration on
the local cohomology sheaf Hr

Z(OX) is generated at level dim(X)−dα̃(Z)e−1 and, assuming

that k ≥ 1 and Z is singular, of dimension d, that Hk(Ωd−k
Z ) 6= 0. All these results have

been known for hypersurfaces in smooth varieties.

1. Introduction

It is well-known that rational and Du Bois singularities play an important role in the
hierarchy of singularities of higher-dimensional algebraic varieties. Recently, definitions of
“higher order” versions of these classes of singularities have been proposed, as follows. Sup-
pose that Z is a complex algebraic variety. If Ωp

Z is the p-th graded piece of the Du Bois
complex of Z (suitably shifted), then there is a canonical morphism

Ωp
Z → Ωp

Z

that is an isomorphism over the smooth locus of Z. Following [JKSY21], we say that Z has
k-Du Bois singularities if this morphism is an isomorphism for 0 ≤ p ≤ k. For k = 0, we
recover the definition of Du Bois singularities.

On the other hand, if µ : Z̃ → Z is a resolution of singularities that is an isomorphism

over Z r Zsing and such that D = µ−1(Zsing) is a simple normal crossing divisor on Z̃, then
following [FL22a] we say that Z has k-rational singularities if the canonical morphism

Ωp
Z → Rµ∗Ω

p

Z̃
(logD)

is an isomorphism for 0 ≤ p ≤ k. Again, for k = 0 this is the classical notion of rational
singularities. Our main goal in this note is to characterize numerically, in the case when Z
is locally a complete intersection, the condition for having k-rational singularities. A similar
characterization for k-Du Bois locally complete intersections has been obtained in [MP22a],
extending work on hypersurfaces in [MOPW21] and [JKSY21].

Suppose that X is a smooth, irreducible, n-dimensional complex algebraic variety and Z
is a locally complete intersection closed subscheme of X, of pure codimension r in X. In
this setting the minimal exponent α̃(Z) was introduced and studied in [CDMO22]. In the
case r = 1, this is the invariant introduced by Saito in [Sai94] as the negative of the largest
root of the reduced Bernstein-Sato polynomial of Z. In general, α̃(Z) can be described
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in terms of the Kashiwara-Malgrange V -filtration associated to Z and it is also related to
the Hodge filtration on the local cohomology sheaf HrZ(OX). The minimal exponent can
be considered as a refinement of the log canonical threshold of (X,Z): we always have
lct(X,Z) = min

{
α̃(Z), r}. Moreover, it is shown in [CDMO22] that α̃(Z) > r if and only if

Z has rational singularities, extending a result due to Saito [Sai93] in the case of hypersurfaces.

The following is our main result:

Theorem 1.1. If Z is a locally complete intersection subvariety of the smooth, irreducible
variety X, of pure codimension r, then Z has k-rational singularities if and only if α̃(Z) >
k + r.

In the case of hypersurfaces, this result was proved independently in [FL22b] and [MP22b].
The proof we give follows the idea in [FL22b], making also essential use of results from [CD21]
on the Kashiwara-Malgrange V -filtration in the case of higher codimension subvarieties. A
key ingredient in the proof is Saito’s theory of mixed Hodge modules [Sai90].

The characterization of k-Du Bois singularities in [MP22a] for locally complete intersections
can also be formulated in terms of the minimal exponent: it says that, with the notation in
Theorem 1.1, Z has k-Du Bois singularities if and only if α̃(Z) ≥ k + r. In particular, we
obtain the following

Corollary 1.2. If Z is a complex algebraic variety which is locally a complete intersection
and if Z has k-Du Bois singularities, for some k ≥ 1, then Z has (k−1)-rational singularities.

Another consequence of the numerical characterizations of k-rational and k-Du Bois locally
complete intersection singularities is that k-rational implies k-Du Bois. However, this result
has already been known (it was proved independently in [FL22b] and [MP22a]) and we use
it in our proof of Theorem 1.1.

As a consequence of the result in Theorem 1.1 and of general properties of the minimal
exponent, we obtain an upper bound for the dimension of the singular locus. We note that
if in the following corollary we replace “k-rational” by “k-Du Bois”, then it follows from the
results in [MP22a] that codimZ(Zsing) ≥ 2k + 1.

Corollary 1.3. If Z is a complex algebraic variety which is locally a complete intersection
and if Z has k-rational singularities, then

codimZ(Zsing) ≥ 2k + 2.

Let us recall the condition for k-Du Bois singularities in terms of the Hodge filtration
on local cohomology. For every subvariety Z of a smooth complex algebraic variety X and
every i, the local cohomology sheaf HiZ(OX) underlies a mixed Hodge module. As such, it
carries a Hodge filtration F•HiZ(OX), an increasing filtration by coherent OX -submodules.
If Z is a locally complete intersection of pure codimension r, then the only nonzero local
cohomology sheaf is HrZ(OX). There is another filtration E•HrZ(OX) on HrZ(OX), also by
coherent OX -modules, given by

EpHrZ(OX) =
{
u ∈ HrZ(OX) | Ip+1

Z u = 0
}

for p ≥ 0,

where IZ is the ideal defining Z. It is shown in [MP22a] that FpHrZ(OX) ⊆ EpHrZ(OX) for
all p ≥ 0 and equality for p = k implies equality also for p < k. One defines the cohomological
level of the Hodge filtration on HrZ(OX) by

p(Z) = sup
{
k ≥ 0 | FkHrZ(OX) = EkHr(OX)

}
,
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with the convention that p(Z) = −1 if there are no such k. It is then shown in [MP22a]
that Z has k-Du Bois singularities if and only if p(Z) ≥ k. The condition in terms of the
minimal exponent follows from this and the equality p(Z) = max

{
bα̃(Z)c − r,−1

}
, proved

in [CDMO22].

We characterize k-rationality in a similar fashion. Recall that if X is a smooth irreducible
n-dimensional variety and Z is a closed subvariety of X of pure codimension r, then HrZ(OX)
also carries a weight filtration and the lowest weight piece is Wn+rHrZ(OX), which underlies
a pure Hodge module of weight n + r (this DX -module is the intersection cohomology DX -
module of Brylinski and Kashiwara [BK81]). We prove the following result, which in the case
of hypersurfaces was proved in [Ola22].

Theorem 1.4. If Z is a locally complete intersection subvariety of the smooth, irreducible,
n-dimensional variety X, of pure codimension r, then for every nonnegtive integer k, we have
α̃(Z) > k + r if and only if FkWn+rHrZ(OX) = EkHrZ(OX).

We also show that for singular locally complete intersections that have k-rational singu-
larities, with k ≥ 1, some higher cohomology groups of the graded pieces of the Du Bois
complex do not vanish. This extends the result from [MOPW21, Theorem 1.5] in the case of
hypersurfaces.

Theorem 1.5. Let Z be a locally complete intersection subvariety of the smooth, irreducible,
n-dimensional variety X. If Z has pure dimension d and k-rational singularities, for some
k ≥ 1, then

Hk
(
Ωd−k
Z

)
' ExtkOZ

(Ωk
Z , ωZ) ' ωZ ⊗OZ

Symk
OZ
Q,

where Q is the cokernel of the canonical map TX |Z → NZ/X . In particular, if Z is singular

at x, then Hk
(
Ωd−k
Z

)
x
6= 0.

As observed in [MOPW21], such a result imposes restrictions on varieties with quotient
or toroidal singularities. Indeed, if Z is a variety with quotient or toroidal singularities,
then Hi

(
Ωp
Z) = 0 for all p and all i ≥ 1; for quotient singularities, this follows from [DB81,

Section 5] and for toroidal singularities, it follows from [GNAPGP88, Chapter V.4]. On the
other hand, it is well-known that such singularities are rational. By combining Theorems 1.1
and 1.5, we thus obtain

Corollary 1.6. Let Z be a locally complete intersection subvariety, of pure codimension r,
of the smooth, irreducible algebraic variety X. If Z is singular, with quotient or toroidal
singularities, then r < α̃(Z) ≤ r + 1.

Our final result concerns the level of generation of the Hodge filtration on HrZ(OX). Recall
that ifM is a DX -module endowed with a good filtration, where DX is the sheaf of differential
operators on X, then we have F1DX · FpM ⊆ Fp+1M, with equality for p � 0 (here F•DX
is the order filtration on DX). If equality holds for p ≥ p0, we say that the filtration on M
is generated at level p0. This definition applies, in particular, for the filtered DX -module
underlying a mixed Hodge module on X.

Theorem 1.7. If Z is a singular, pure codimension r, locally complete intersection subvariety
of the smooth, irreducible, n-dimensional variety X, then the Hodge filtration on HrZ(OX) is
generated at level n− dα̃(Z)e − 1.

When r = 1, this is [MP20, Theorem A]. We also note that it follows from [MP22a,
Theorem 4.2] that the filtration on HrZ(OX) is always generated at level n − r, hence the
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assertion in the above theorem is interesting when α̃(Z) > r − 1. Furthermore, via the
equivalence in loc. cit., the assertion in Theorem 1.7 admits the following interpretation in
terms of relative vanishing.

Theorem 1.8. Let Z be a singular, pure codimension r, locally complete intersection subvari-
ety of the smooth, irreducible, n-dimensional variety X. If f : Y → X is a proper morphism
that is an isomorphism over X r Z, with Y smooth and E = f−1(Z)red a simple normal
crossing divisor, then

Rr−1+if∗Ω
n−i
Y (logE) = 0 for i > n− dα̃(Z)e − 1.

Outline of the paper. In the next section, we review some basic notions and results that
we will need for the proofs of our main results. Theorem 1.1 and its corollaries, as well as
Theorem 1.4 are proved in Section 3. Theorem 1.5 is proved in Section 4, while Theorem 1.7
is proved in Section 5.

Acknowledgments. We would like to thank Sebastián Olano and Mihnea Popa for many
helpful discussions. We are also indebted to Christian Schnell for some useful suggestions.

2. Background overview

In this section we recall some definitions and results that we will need. We work over the
field C of complex numbers. By a variety we mean a reduced scheme of finite type over C,
not necessarily irreducible. For a variety Z, we denote by Zsing the singular locus of Z.

2.1. Mixed Hodge modules. We only give a brief introduction to mixed Hodge modules
and refer for proofs and details to [Sai90]. Let X be a smooth, irreducible, n-dimensional
variety. We denote by DX the sheaf of differential operators on X. For basic facts about DX -
modules, we refer to [HTT08]. All the DX -modules we will consider will be left DX -modules.
Since some of the results in the literature are stated for right DX -modules, we recall that
there is an equivalence of categories between left and right DX -modules such that if Mr is
the right DX -module corresponding to the left DX -moduleM, then we have an isomorphism
of OX -modules

Mr 'M⊗OX
ωX .

When dealing with filtered DX -modules, the filtrations onM andMr are indexed such that
the above isomorphism maps Fp−nMr to FpM⊗OX

ωX for all p ∈ Z.

All filtrations on DX -modules that we will encounter are assumed to be good filtrations
compatible with the filtration F•DX on DX by order of differential operators. This means
that they are increasing, exhaustive filtrations by OX -submodules such that we have

FpDX · FqM⊆ Fp+qM for all p, q ∈ Z,

and there is q0 such that this inclusion is an equality for all p ≥ 0 and q ≥ q0. In this case
we say that the filtration is generated at level q0.

A mixed Hodge module M = (M, F•M,P, α,W•M) on X consists of several pieces of
data: M is a DX -module on M (holonomic and with regular singularities), F•M is a good
filtration on M (the Hodge filtration), W•M is a finite increasing filtration on M by DX -
submodules (the weight filtration), and P is a perverse sheaf over Q (sometimes written
as rat(M)), whose complexification is isomorphic via α to the perverse sheaf over C that
corresponds to M via the Riemann-Hilbert correspondence. These data are supposed to
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satisfy a complicated set of conditions that we do not discuss. We refer to (M, F ) as the
filtered DX -module underlying M (though, with an abuse of notation, we sometimes write
FkM and WkM instead of FkM and WkM, respectively).

The Tate twist M(k) of a mixed Hodge module M as above has the same underlying
DX -module, but the two filtrations are shifted by

FiM(k) = Fi−kM and WiM(k) = Wi+2kM for all i ∈ Z.

We note that the mixed Hodge modules on X form an Abelian category and every mor-
phism of mixed Hodge modules is a morphism of DX -modules, which is strict with respect
to both the Hodge and the weight filtration. There is a duality functor D on this category,
lifting the usual duality functor on holonomic DX -modules. All our Hodge modules are po-
larizable, so the choice of a polarization implies that if M as above is pure of weight k (that
is, GrWi (M) = 0 for i 6= k), we have an isomorphism D(M) ' M(k). For a general mixed
Hodge module M and for every k ∈ Z, the graded piece GrWk (M), with the induced Hodge
filtration, is a pure Hodge module of weight k.

An important example of mixed Hodge module (in fact, the only one that is easy to describe
explicitly) is QH

X [n], which is a pure Hodge module of weight n. The underlying DX -module

is OX and the Hodge filtration is such that GrFi (OX) = 0 for all i 6= 0. The corresponding
perverse sheaf is QX [n]. Note that since QH

X [n] has weight n, a choice of polarization gives
an isomorphism D(QH

X [n]
)
' QH

X(n)[n].

Given a mixed Hodge module M , with underlying filtered DX -module (M, F ), the Hodge
filtration makes the de Rham complex of M a filtered complex. The graded pieces are, in
fact, complexes of OX -modules. More precisely, GrFp DRX(M) is the complex

0→ GrFp (M)→ Ω1
X ⊗OX

GrFp+1(M)→ . . .→ Ωn
X ⊗OX

GrFp+n(M)→ 0,

placed in cohomological degrees −n, . . . , 0. For example, we have

GrF−pDRX

(
QH
X [n]

)
= Ωp

Y [n− p].

We always think of GrFp DRX(M) as an object in the derived category of coherent sheaves
on X. This construction is compatible with proper push-forward (see [Sai88, Section 2.3.7])
and satisfies the following compatibility property with the duality functor by [Sai88, Sections
2.4.5 and 2.4.11]: for every p, we have a canonical isomorphism

(1) GrFp DRX

(
D(M)

)
' RHomOX

(
GrF−pDRX(M), ωX [n]

)
.

For future reference, we include the following lemma, in which we consider arbitrary filtered
DX -modules:

Lemma 2.1. If f : (M, F )→ (N , F ) is a morphism of filtered DX-modules on X and k ∈ Z,
then the induced morphism

GrFp DRX(f) : GrFp DRX(M)→ GrFp DRX(N)

is an isomorphism (in the derived category) for all p ≤ k if and only if Fpf : FpM → FpN is
an isomorphism for all p ≤ k + n.

Proof. The “if” assertion follows directly from the definition of the graded de Rham complex.
For the converse, arguing by induction, it is enough to show that if Fpf is an isomorphism for

all p ≤ k+n− 1 and GrFp DRX(f) is an isomorphism (in the derived category), then Fk+n(f)
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is an isomorphism. By hypothesis, we have a morphism of complexes placed in cohomological
degrees −n, . . . , 0:

0 GrFk (M) · · · Ωn−1
X ⊗OX

GrFk+n−1(M) Ωn
X ⊗OX

GrFk+n(M) 0

0 GrFk (N) · · · Ωn−1
X ⊗OX

GrFk+n−1(N) Ωn
X ⊗OX

GrFk+n(N) 0

∼= ∼=

such that the vertical maps in degrees 6= 0 are isomorphisms and such that the induced
map for the 0-th cohomology is an isomorphism. An application of the 5-Lemma gives that
the map GrFk+n(f) is an isomorphism, and another application of the 5-Lemma implies that
Fk+nf is an isomorphism. �

One can define mixed Hodge modules also on a singular variety Z (if Z can be embedded
in a smooth variety X, then we simply consider mixed Hodge modules on X whose support
is contained in Z). One can consider the derived category of mixed Hodge modules on Z,
denoted Db

(
MHM(Z)

)
. This satisfies a 6-functor formalism. For example, if i : Z ↪→ X

is the inclusion, where X is smooth, then the underlying DX -module of the mixed Hodge
module Hp

(
i∗i

!QH
X [n]

)
is the local cohomology sheaf HpZ(OX) of OX along Z.

For every variety Z, if aZ : Z → pt is the morphism to a point, then one defines QH
Z :=

a∗Z(QH
pt) in Db

(
MHM(Z)

)
. If Z is smooth, then this coincides (up to a cohomological shift)

with the object that we have already discussed. In general, however, it is a more complicated
object. If X is a smooth, irreducible n-dimensional variety and i : Z ↪→ X is a closed
embedding, then by functoriality we have a canonical isomorphism QH

Z ' i∗QH
X , so we have

a canonical isomorphism

(2) D(QH
Z ) ' i!QH

X(n)[2n].

For every Z, it is shown in [Sai90, Section 4.5] that QH
Z is of weight ≤ 0, that is, we have

GrWi
(
Hj(QH

Z )
)

= 0 for i > j. Furthermore, if Z has pure dimension d, then Hi(QH
Z ) = 0 for

i > d and the intersection cohomology Hodge module

(3) ICZQH := GrWd Hd(QH
Z )

is the unique object of MHM(Z) whose restriction to U = Z r Zsing is QH
U [d] and which

has no subobject or quotient supported on Zsing. The corresponding perverse sheaf is the
intersection cohomology complex of Z; if Z is irreducible, then this is simple, hence so is
ICZQH and we have Q = End

(
ICZQH

)
. In general, if Z has N irreducible components, we

have End
(
ICZQH

)
= QN and a morphism

(
ICZQH

)
→
(
ICZQH

)
is uniquely determined

by its restriction to the smooth locus of Z.

Note that by definition of ICZQH , we have a canonical morphism

(4) γZ : QH
Z [d]→ ICZQH .

Suppose now that X is a smooth, irreducible n-dimensional variety and i : Z ↪→ X is a
closed embedding. Let r = n − d. Since ICZQH = GrWd Hd(QH

Z ) and GrWp Hd(QH
Z ) = 0 for

p > d, it follows using (2) that

(5) i∗D(ICZQH) ' GrW−d
(
i∗H−dD(QH

Z )
)
' GrW−dH−d

(
i∗i

!QH
X(n)[2n]

)
= GrWn+rHrZ(OX)(n)
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and GrWp HrZ(OX) = 0 for p < n+ r. We note that this lowest weight piece of HrZ(OX) is the
intersection cohomology D-module introduced by Brylinski and Kashiwara in [BK81]; if Z is
irreducible, then it can be characterized as the unique simple DX -submodule of HrZ(OX).

We also consider the shifted dual γ∨Z = D(γ)(−d) of γZ , that can be identified via (2) to

(6) γ∨Z : D(ICZQH)(−d)→ i!QH
X [n+ r](n− d).

Note that since ICZQH is pure of weight d, the choice of a polarization gives an isomorphism
D(ICZQH)(−d) ' ICZQH .

We will be especially interested in the case when Z is a locally complete intersection
subvariety of X, of pure codimension r. In this case HiZ(OX) = 0 for all i 6= r, hence

i!QH
X [n + r] is a mixed Hodge module on Z. Duality implies that also QH

Z [d] is a mixed
Hodge module on Z, hence γZ and γ∨Z are morphisms of mixed Hodge modules.

2.2. V -filtrations. Suppose that X is a smooth, irreducible, n-dimensional affine variety
and f1, . . . , fr ∈ OX(X) = R are nonzero regular functions such that the ideal (f1, . . . , fr)
defines the closed subscheme Z of X. We consider the graph embedding

ι : X ↪→W = X ×Ar, ι(x) =
(
x, f1(x), . . . , fr(x)

)
and the D-module pushforward Bf = ι+OX (where f stands for (f1, . . . , fr)). If t1, . . . , tr
denote the standard coordinates on Ar, then we can write

Bf =
⊕
α∈Zr

≥0

R∂αt δf ,

where for α = (α1, . . . , αr), we put ∂αt = ∂α1
t1
· · · ∂αr

tr . The action of R and of ∂ti are the
obvious ones, while the actions of D ∈ DerC(R) and of the ti are given by

D · h∂αt δf = D(h)∂αt δf −
r∑
i=1

D(fi)h∂
α+ei
t δf and ti · h∂αt δf = fih∂

α
t δf − αih∂

α−ei
t δf ,

where e1, . . . , er is the standard basis of Zd. In fact, Bf underlies the pure Hodge module
ι∗Q

H
X [n], of weight n, with the Hodge filtration given by

Fp+rBf =
⊕
|α|≤p

R∂αt δf ,

where for α = (α1, . . . , αr), we put |α| = α1 + . . .+ αr.

The V -filtration on Bf has been constructed by Kashiwara [Kas83], extending work of
Malgrange [Mal83] in the case r = 1. It is a decreasing, exhaustive filtration indexed by
rational numbers (V λBf )λ∈Q. It is discrete and left-continuous and it is characterized by
several properties, the most important of these saying that for every λ ∈ Q

ti · V λBf ⊆ V λ+1Bf and ∂ti · V λBf ⊆ V λ−1Bf ,

and if s = −
∑r

i=1 ∂titi, then s+λ is nilpotent on GrλV (Bf ) = V λBf/V
>λBf , where V >λBf =⋃

β>λ V
βBf . Note that the Hodge filtration on Bf induces a Hodge filtration on each GrλV (Bf ).

In fact, a V -filtration exists on ι+M, whenever M underlies a mixed Hodge module. In
the case r = 1, the interplay between the Hodge filtration on M and V -filtrations plays an
important role in the definition of mixed Hodge modules. For details about the construction
and properties of V -filtrations, see [BMS06].
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Let i : Z ↪→ X be the inclusion. For r = 1, the V -filtration is the key ingredient for the
definition of i!(M) and i∗(M) when M is a mixed Hodge module on X. In the case r > 1,
the corresponding description does not follow from the definition of these functors, but it has
been recently proved in [CD21, Theorem 1.2]. We only state this in the case M = QH

X [n].

Theorem 2.2. With the above notation, the following hold: the complex

0→ Gr0
V (Bf )(−r)

(t1,t2,...,tr)−−−−−−−→
r⊕
i=1

Gr1
V (Bf )(−r)→ · · · → GrrV (Bf )(−r)→ 0,

placed in cohomological degrees 0, . . . , r represents i∗i
!QH

X [n] in the derived category of filtered
DX-modules and the complex

0→ GrrV (Bf )
(∂t1 ,...,∂tr )
−−−−−−−→

r⊕
i=1

Grr−1
V (Bf )(−1)→ · · · → Gr0

V (Bf )(−r)→ 0

placed in cohomological degrees −r, . . . , 0 represents i∗i
∗QH

X [n].

2.3. The minimal exponent. We next discuss the minimal exponent for locally complete
intersection varieties, following [CDMO22]. Let X be a smooth, irreducible, n-dimensional
variety and Z a (nonempty) closed subscheme of X, which is locally a complete intersection
of pure codimension r. Suppose first that X = Spec(R) is affine and Z is defined by the ideal
generated by f1, . . . , fr ∈ R. The minimal exponent α̃(Z) is defined by1

(7) α̃(Z) =

{
sup{γ > 0 | δf ∈ V γBf}, if δf 6∈ V rBf ;

sup{r − 1 + q + γ | Fq+rBf ⊆ V r−1+γBf}, if δf ∈ V rBf .

In general, we consider a cover X = U1 ∪ . . . ∪ UN , where each Ui is an affine open subset as
above, and put

α̃(Z) = min
i;Z∩Ui 6=∅

α̃(Z ∩ Ui).

It follows from [BMS06, Theorem 1] that we always have min
{
α̃(Z), r

}
= lct(X,Z), the log

canonical threshold of the pair (X,Z). Therefore the minimal exponent is interesting precisely
when lct(X,Z) = r, in which case Z is automatically reduced (see [CDMO22, Remark 4.2]).
Moreover, it follows from [CDMO22, Corollary 1.7] that Z has rational singularities if and only
if α̃(Z) > r. One can also show that Z is smooth if and only if α̃(Z) =∞; in fact, if x ∈ Z is a
singular point, then we have the following more precise bound (see [CDMO22, Remark 4.21]):

(8) α̃(Z) ≤ n− 1
2 dimC TxZ.

The minimal exponent α̃(Z) depends on the ambient variety X, but in a predictable way:
the difference α̃(Z)− dim(X) only depends on Z (see [CDMO22, Proposition 4.14]).

When r = 1, the minimal exponent was defined by Saito [Sai94] as the negative of the

largest root of the reduced Bernstein-Sato polynomial b̃Z(s). The fact that this agrees with
the above definition is a consequence of [Sai16, (1.3.8)].

Recall now that the DX -module HrZ(OX) underlies a mixed Hodge module on X, namely

Hr
(
i∗i

!QH
X [n]

)
, where i : Z ↪→ X is the inclusion. We thus have a canonical filtration on

1We note that what we denote by Fp+rBf here is denoted by FpBf in [CDMO22].
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HrZ(OX), the Hodge filtration
(
FpHrZ(OX)

)
p≥0

. We have a second filtration, the order fil-

tration
(
EpHrZ(OX)

)
p≥0

, given by

EpHrZ(OX) =
{
u ∈ HrZ(OX) | Ip+1

Z u = 0
}

= Im
(
ExtrOX

(OX/Ip+1
Z ,OX) ↪→ HrZ(OX)

)
,

where IZ is the ideal defining Z in X (see [MP22a, Proposition 3.11]). It is a general fact
that FpHrZ(OX) ⊆ EpHrZ(OX) for all p ≥ 0 (see [MP22a, Proposition 3.4]) and the following
result shows that the minimal exponent governs how far these two filtrations agree (see
[CDMO22, Theorem 1.3]):

Theorem 2.3. If X is a smooth, irreducible variety and Z is a locally complete inter-
section subvariety of pure codimension r in X, then for a nonnegative integer k, we have
FpHrZ(OX) = EpHrZ(OX) for 0 ≤ p ≤ k if and only if α̃(Z) ≥ r + k.

2.4. k-Du Bois singularities. To a variety Z, Du Bois associated in [DB81] a complex Ω•Z ,
known now as the Du Bois complex of Z. This is a filtered complex that agrees with the de
Rham complex Ω•Z , with the “stupid” filtration, when Z is smooth. This allows extending
to singular varieties some important cohomological properties of the de Rham complex of
smooth varieties, see [PS08, Chapter 7.3] for an introduction to this topic.

We are interested in the shifted truncations Ωp
Z := GrpF (Ω•Z)[p], which are objects in the

bounded derived category Db
coh(Z) of coherent sheaves on Z. For every p, there is a canonical

morphism Ωp
Z → Ωp

Z that is an isomorphism over the smooth locus of Z. Following [JKSY21],
we say that Z has k-Du Bois singularities, for some nonnegative integer k, if these morphisms
are isomorphisms for all 0 ≤ p ≤ k. Note that for k = 0, we recover the familiar notion of
Du Bois singularities.

As we have mentioned in the Introduction, it was shown in [MP22a, Theorem F] that if X is
a smooth, irreducible variety and Z is a locally complete intersection subvariety of X, of pure
codimension r, then Z has k-Du Bois singularities if and only if FpHrZ(OX) = EpHrZ(OX)
for p ≤ k. In terms of minimal exponents, this condition can be rephrased as α̃(Z) ≥ r + k.
The proof of this result in loc. cit. extends the argument in the case of hypersurfaces, for
which the two implications had previously been proved in [MOPW21] and [JKSY21].

Remark 2.4. If Z is a locally complete intersection variety with k-Du Bois singularities,
then codimZ(Zsing) ≥ 2k + 1. Indeed, this is a local statement, hence we may assume that
Z has pure dimension (we use the fact that Z is Cohen-Macaulay) and that it is a closed
subvariety of the smooth irreducible variety X. In this case the assertion follows by combining
[MP22a, Corollary 3.40 and Theorem F].

The connection between the Du Bois complex and mixed Hodge modules is provided by the
following result of Saito. If Z is a closed subvariety of the smooth, irreducible, n-dimensional
variety X and i : Z ↪→ X is the inclusion, then it is a consequence of [Sai00, Theorem 4.2]
that for every p, we have an isomorphism

(9) Ωp
Z [−p] ' GrF−pDRX(i∗Q

H
Z )

in Db
coh(X). In light of (1) and (2), this is equivalent to

(10) Ωp
Z [−p] ' RHomOX

(
GrFp−nDRXi∗i

!QH
X [n], ωX

)
.

For an easy proof of this isomorphism, see [MP22a, Proposition 5.5].
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2.5. k-rational singularities. Given a variety Z, by a strong log resolution of Z we mean a

proper morphism µ : Z̃ → Z that is an isomorphism over ZrZsing, such that Z̃ is smooth and
E = µ−1(Zsing) is a simple normal crossing divisor. For a nonnegative integer k, following
[FL22a], we say that Z has k-rational singularities if the canonical morphism

(11) Ωp
Z → Rµ∗Ω

p

Z̃
(logE)

is an isomorphism for all p ≤ k. This is easily seen to be independent of the log resolution
(see for example [MP22b, Lemma 1.6]). Note that for k = 0 we recover the classical notion
of rational singularities. This condition implies that Z is normal, hence in particular, every
connected component of Z is irreducible. The notion of k-rational singularities has been
extensively studied in [FL22a], [FL22b], [FL22c], [MP22b].

For our purpose it will be convenient to consider a different description of k-rational sin-
gularities. Recall from [MP22b, Section 6] that for every variety Z of pure dimension d and
every nonnegative integer k, we have a canonical morphism

(12) ψk : Ωk
Z → RHomOZ

(
Ωd−k
Z , ω•Z [−d]

)
,

where ω•Z is the dualizing complex of Z. This is defined as follows: suppose that µ : Y → Z is
an arbitrary resolution of singularities (we only require that Y is smooth and µ is proper and
an isomorphism over a dense open subset of Z). By functoriality of the Du Bois complex,
for every nonnegative integer k, we have a canonical morphism αk : Ωk

Z → Rµ∗Ω
k
Y . On the

other hand, on Y we have a canonical isomorphism

Ωk
Y
'−→ RHomOY

(
Ωd−k
Y , ω•Y [−d]

)
.

By pushing this forward and using Grothendieck duality for µ, we obtain an isomorphism βk
as the composition

Rµ∗Ω
k
Y
'−→ Rµ∗RHomOY

(
Ωd−k
Y , ω•Y [−d]

) '−→ RHomOZ

(
Rµ∗Ω

d−k
Y , ω•Z [−d]

)
.

The morphism ψk is obtained as the composition α∨d−k ◦ βk ◦ αk, where we put α∨d−k =

RHomOZ

(
αd−k, ω

•
Z [−d]

)
. It is shown in [MP22b, Proposition 6.1] that this definition does

not depend on the choice of resolution of singularities.

With this notation, we have the following characterization of k-rational singularities in the
locally complete intersection case, see [MP22b] (in loc. cit. one assumes that Z is irreducible,
but the argument works in general):

Theorem 2.5. If Z is a locally complete intersection variety of pure dimension d and k is
a nonnegative integer, then Z has k-rational singularities if and only if Z has k-Du Bois
singularities and the morphism ψk : Ωk

Z → RHomOZ

(
Ωd−k
Z , ωZ

)
is an isomorphism.

It will be important for us to use an interpretation of the morphism ψk from [FL22b,
Appendix], as the graded de Rham of a morphism of mixed Hodge modules. Let Z be a
variety of pure dimension d and µ : Y → Z any resolution of singularities, with µ a projective
morphism. Note that by functoriality we have a canonical morphism of mixed Hodge modules
α : QH

Z [d] → µ∗Q
H
Y [d]. On the other hand, since QH

Y [d] is pure of weight d, on Y we have a
canonical isomorphism QH

Y [d]→ D
(
QH
Y [d]

)
(−d), which after pushing forward to Z and using

the compatibility of pushforward with duality, gives an isomorphism

β : µ∗Q
H
Y [d]

'−→ µ∗D
(
QH
Y [d]

)
(−d)

'−→ D
(
µ∗Q

H
Y [d]

)
(−d).
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We then obtain a morphism ψZ in the derived category of mixed Hodge modules on Z as the
following composition

(13) QH
Z [d]

α−→ µ∗Q
H
Y [d]

β−→ D
(
µ∗Q

H
Y [d]

)
(−d)

α∨−→ D
(
QH
Z [d]

)
(−d),

where α∨ = D(α)(−d).

If Z is a closed subvariety of the smooth, irreducible variety X and i : Z ↪→ X is the
inclusion, then using the compatibility of the graded de Rham complex with direct image
and duality, we see that for every k ∈ Z we have

αk = GrF−kDRX(i∗α)[k − d], βk = GrF−kDRX(i∗β)[k − d], α∨d−k = GrF−kDRX(i∗α
∨)[k − d],

hence ψk = GrF−kDRX(i∗ψZ)[k − d].

Remark 2.6. It follows from the definition of ψZ that ψ∨Z := D(ψZ)(−d) can be identified
with ψZ .

Remark 2.7. Suppose now that X is a smooth, irreducible, n-dimensional variety and i : Z ↪→
X is a closed embedding, where Z is a locally complete intersection subvariety of X, of pure
codimension r. Let d = n− r. As we have already mentioned, in this case, the morphisms

QH
Z [d]

γZ−→ ICZQH and D
(
ICZQH

)
(−d)

γ∨Z−→ D
(
QH
Z [d]

)
(−d)

are morphisms of mixed Hodge modules, with γZ surjective and γ∨Z injective.

Since ψZ is a morphism between two mixed Hodge modules on Z, we obtain the same
morphism if we take H0(−); in other words, ψZ agrees with the composition

(14) QH
Z [d]→ H0

(
µ∗Q

H
Y [d]

)
→ D

(
H0(µ∗Q

H
Y [d])

)
(−d)→ D

(
QH
Z [d]

)
(−d).

On the other hand, since QH
Y [d] is pure of weight d, so isH0

(
µ∗Q

H
Y [d]

)
, see [Sai88, Théorème 1].

Since GriW
(
QH
Z [d]

)
= 0 for i > d, it follows that the composition in (14) further factors as

(15) QH
Z [d]

γZ−→ ICZQH → H0
(
µ∗Q

H
Y [d]

)
→ D

(
H0(µ∗Q

H
Y [d])

)
(−d)

→ D
(
ICZQH)(−d)

γ∨Z−→ D
(
QH
Z [d]

)
(−d).

We also note that the intermediate composition

ICZQH → H0
(
µ∗Q

H
Y [d]

)
→ D

(
H0(µ∗Q

H
Y [d])

)
(−d)→ D

(
ICZQH)(−d)

is always an isomorphism. Indeed, a morphism ICZQH → D
(
ICZQH)(−d) is uniquely

determined by its restriction to a dense open subset of the smooth locus of Z, and on a
suitable such subset over which µ is an isomorphism this composition is the identity.

For every k, it follows from Lemma 2.1 that GrFp DRX(i∗ψZ) is an isomorphism for all p ≤ k
if and only if Fpi∗ψZ is an isomorphism for every p ≤ k+n. Since i∗γZ is surjective and i∗γ

∨
Z

is injective, it follows from the above discussion that GrFp DRX(i∗ψZ) is an isomorphism for
all p ≤ k if and only if

Fpi∗γZ : Fpi∗Q
H
Z [d]→ Fpi∗ICZQH and

Fp+di∗γ
∨
Z : Fp+dD(i∗ICZQH) = Fp−rWn+rHrZ(OX)→ Fp+di∗D

(
QH
Z [d]

)
= Fp−rHrZ(OX)

are isomorphisms for all p ≤ k + n.
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Remark 2.8. We note that in [FL22b] one says that a variety Z of pure dimension d has
k-rational singularities if the composition

Ωp
Z → Ωp

Z

ψk−→ RHomOZ

(
Ωd−k
Z , ω•Z [−d]

)
is an isomorphism for all p ≤ k. It is shown in [FL22b, Corollary 3.17] that this definition
is equivalent to the definition we use in this paper if codimZ(Zsing) ≥ 2k + 1. Furthermore,
it is shown in [FL22b, Theorem 3.20] that with their definition as well, if Z is a locally
complete intersection and has k-rational singularities, then Z has Du Bois singularities, and
thus codimZ(Zsing) ≥ 2k + 1 by Remark 2.4. We thus conclude that for locally complete
intersection varieties, the two definitions of k-rational singularities agree.

3. Characterizations of k-rationality for locally complete intersections

Let X be a smooth, irreducible variety of dimension n and Z be a locally complete inter-
section subvariety of pure codimension r in X. Let d = n − r be the dimension of Z and
i : Z ↪→ X the inclusion. We will freely use the notation introduced in the previous section.
The following is the main result of this section, which implies several of the statements in
the introduction.

Theorem 3.1. With the above notation, for every nonnegative integer k, the following as-
sertions are equivalent:

(a) α̃(Z) > k + r;
(b) FkWn+rHrZ(OX) = EkHrZ(OX);
(c) The morphism

(16) Fp+ri∗Q
H
Z [d] � Fp+ri∗ICZQH ,

induced by γZ and the composition

(17) FpWn+rHrZ(OX) ↪→ FpHrZ(OX) ↪→ EpHrZ(OX),

induced by γ∨Z , are isomorphisms for p ≤ k.
(d) Z has k-Du Bois singularities and the morphism

ψk : Ωk
Z → RHomOZ

(
Ωd−k
Z , ωZ

)
is an isomorphism;

(e) the canonical morphism

Ωp
Z → GrF−pDRX(i∗ICZQH)[p− d]

is an isomorphism (in the derived category) for p ≤ k.

Remark 3.2. We note that the morphism in (e) is the composition

Ωp
Z → Ωp

Z ' GrF−pDRX(i∗Q
H
Z )[p]→ GrF−pDRX(i∗ICZQH)[p− d],

where the second map is induced by γZ : QH
Z [d]→ ICZQH .

Remark 3.3. Note that the assertion (d) in the theorem is equivalent to the fact that Z has
k-rational singularities by Theorem 2.5. Therefore the equivalence (a)⇔(d) is the content of
Theorem 1.1, while the equivalence (a)⇔(b) is the content of Theorem 1.4.
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We proceed with the proof of Theorem 3.1 in several steps, by showing the following
implications:

(a)⇒ (b)⇒ (c)⇒ (d) + (e), (d)⇒ (c), and (e)⇒ (b)⇒ (a).

Proof of Theorem 3.1. Since all assertions are local, we may and will assume that X is affine
and Z is defined in X by f1, . . . , fr ∈ OX(X). In particular, we will be able to consider the
V -filtration corresponding to these functions. We denote by IZ the ideal defining Z in X.

Step 1. Proof of (a)⇒(b). Let W• be the monodromy filtration on Gr•VBf , uniquely
characterized by:

• (s+ α) ·W•GrαVBf ⊆W•−2GrαVBf and
• (s+ α)j : GrWn+jGrαVBf

∼= GrWn−jGrαVBf is an isomorphism for all j ≥ 1.

Explicitly, this is given by

(18) Wn+iGrαVBf =
∑
j

ker
(
(s+ α)i+j+1

)
∩ Im

(
(s+ α)j

)
Consider the map σ :

(
Grr−1

V Bf

)⊕r (t1,t2,...,tr)−−−−−−−→ GrrVBf . By [CD21, Theorem 1.2], for every i,
we have an isomorphism of filtered DX -modules

(19) GrWi+rHrZ(OX) '
(
GrWi cokerσ, F [−r]

)
for all i ∈ Z.

Recall that we know that Wi+rHrZ(OX) = 0 for i < n, hence

(20) Wn+rHrZ(OX) = GrWn+rHrZ(OX) '
(
GrWn cokerσ, F [−r]

)
.

Since α̃(Z) > k+r, it follows from the definition of the minimal exponent that Fk+r+1Bf ⊆
V >r−1Bf , hence

(s+ r) · Fk+rBf ⊆
r∑
i=1

ti · Fk+r+1Bf ⊆ V >rBf .

We thus have

(21) Fk+rGrrVBf ⊆WnGrrVBf

because ker(s + r) ⊆ WnGrrVBf by (18). This implies that Fk+r cokerσ ⊆ Wn cokerσ, and
using (20) we conclude that

FkWn+rHrZ(OX) = FkHrZ(OX) = EkHrZ(OX),

where the last equality follows from Theorem 2.3.

Step 2. Proof of (b)⇒(c). We first prove the following

Lemma 3.4. The equality FkWn+rHrZ(OX) = EkHrZ(OX) implies

FpWn+rHrZ(OX) = EpHrZ(OX) for all p ≤ k.

Proof. Since Wn+rHr(Z) is a Hodge module supported on Z, we have

IZ · FpWn+rHrZ(OX) ⊆ Fp−1Wn+rHrZ(OX) for all p ∈ Z

(see [Sai88, Lemme 3.2.6]). On the other hand, it follows easily from the definition of the
filtration E•HrZ(OX) that we have

IZ · EpHrZ(OX) = Ep−1HrZ(OX) for all p ≥ 1.

The assertion in the lemma now follows by decreasing induction on p. �
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We next use duality to prove the following

Lemma 3.5. If FpWn+rHrZ(OX) = FpHrZ(OX) for some p ∈ Z, then the surjective map

Fp+r+1i∗Q
H
Z [d]→ Fp+r+1i∗ICZQH

induced by γZ is an isomorphism.

Proof. The equality FpWn+rHrZ(OX) = FpHrZ(OX) is equivalent to FpGrWn+r+jHrZ(OX) = 0

for all j ≥ 1. Since GrWn+r+jHrZ(OX) underlies a polarizable pure Hodge module of weight
n+ r + j, the choice of a polarization gives an isomorphism of filtered DX -modules:

(22) D
(
GrWn+r+jHrZ(OX)

) '−→
(
GrWn+r+jHrZ(OX)

)
(n+ r + j).

On the other hand,

(23)
D
(
GrWn+r+jHrZ(OX)

) ∼= GrW−n−r−jD
(
HrZ(OX)

)
∼= GrW−n−r−j

(
i∗Q

H
Z [d](n)

) ∼= (GrWd−ji∗Q
H
Z [d]

)
(n).

Combining the two equations (22) and (23) yields(
GrWn+r+jHrZ(OX)

)
(r + j) ∼= GrWd−ji∗Q

H
Z [d],

as filtered DX -modules, which implies

Fp+1−jGrWn+r+jHrZ(OX) ∼= Fp+r+1GrWd−ji∗Q
H
Z [d].

We have seen that our hypothesis gives Fp+1−jGrWn+r+jHrZ(OX) = 0 for j ≥ 1, hence

Fp+r+1GrWd−ji∗Q
H
Z [d] = 0 for j ≥ 1 and thus Fp+r+1Wd−1i∗Q

H
Z [d] = 0. This implies the

conclusion of the lemma by definition of γZ . �

Returning to the proof of the implication (b)⇒(c), note that the assertion in Lemma 3.4
gives the fact that the morphism (17) is an isomorphism for p ≤ k. Similarly, by combining
Lemmas 3.4 and 3.5 we conclude that the morphism (16) is an isomorphism for p ≤ k (in
fact, for p ≤ k + 1). We thus have the assertion in (c).

Step 3. Proof of (c)⇒(d)+(e). The surjectivity of the morphism in (17) implies, in
particular, that Z is k-Du Bois by [MP22a, Theorem F]. Since ψk = GrF−kDRX(i∗ψZ)[k− d],

we see that ψk is an isomorphism if and only if GrF−kDRX(i∗ψZ) is an isomorphism, which

by (1) holds if and only if GrFk−dDRX(i∗ψZ) is an isomorphism (recall that D(ψZ) = ψZ(d),
see Remark 2.6). We thus get assertion in (d).

Similarly, once we know that Z is k-Du Bois, the assertion in (e) is equivalent with the fact
that GrF−pDRX(i∗γZ) is an isomorphism for p ≤ k, which is equivalent by (1) with the fact

that GrFp−dDRX(i∗γ
∨
Z) is an isomorphism for all p ≤ k. This is implied by Fp+ri∗γ

∨
Z being an

isomorphism for all p ≤ k, but this is precisely the morphism FpWn+rHrZ(OX)→ FpHrZ(OX).
Therefore we have the assertion in (e) as well.

Step 4. Proof of (d)⇒(c). It follows from Theorem 2.5 that the conditions in (d) are
equivalent to Z having k-rational singularities. In particular, since we have these conditions
for k, we also have them for k−1. In particular, we know that ψk = GrFp−dDRX(i∗ψZ)[p−d] is

an isomorphism for all p ≤ k. Using (1) and the fact that D(ψZ) = ψZ(d), we conclude that
GrFp−dDRX(i∗ψZ) is an isomorphism for all p ≤ k. Lemma 2.1 thus implies that Fp+ri∗ψZ is
an isomorphism for all p ≤ k. As we have seen in Remark 2.7, this implies that the morphisms
(16) and (17) are isomorphisms for all p ≤ k (for the latter morphism, we also use the fact
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that FpHrZ(OX) = EpHrZ(OX) for p ≤ k, due to the fact that Z has k-Du Bois singularities).
We thus have the condition in (c).

Step 5. Proof of (e)⇒(b). If k = 0, applying RHomOX

(
−, ωX [r]

)
to the isomorphism in

(e) gives via (1) an isomorphism

GrF−nDRXWn+rHrZ(OX)→ GrF−nDRXHrZ(OX)→ ExtrOX
(OZ , ωX)

(note that ExtiOX
(OZ , ωX) = 0 for i 6= r since Z is a locally complete intersection of pure

codimension r). We have

GrF−nDRXHrZ(OX) = ωX ⊗OX
F0HrZ(OX) and

GrF−nDRXWn+rHrZ(OX) = ωX ⊗OX
F0Wn+rHrZ(OX),

while the image of the inclusion ExtrOX
(OZ , ωX) ↪→ ωX ⊗OX

HrZ(OX) is ωX ⊗OX
E0HrZ(OX).

We thus obtain the assertion in (b) in this case.

From now on we assume k ≥ 1. Arguing by induction on k, we may and will assume that
FpWn+rHrZ(OX) = EpHrZ(OX) for p ≤ k − 1. In particular, we know that Z has (k − 1)-Du
Bois singularities, and thus codimZ(Zsing) ≥ 2k−1 ≥ k by [MP22a, Corollary 3.40]. We only
need to prove that the injection FkWn+rHrZ(OX) ↪→ EkHrZ(OX) is indeed an isomorphism.
Moreover, because we know the corresponding assertions for the lower pieces of the filtrations,
it follows from Lemma 2.1 that it is enough to show that the induced morphism

(24) GrFk−nDRXWn+rHrZ(OX)→ GrEk−nDRXHrZ(OX)

is an isomorphism (in the derived category).

Applying RHomOX

(
−, ωX [r+ k]

)
to the isomorphism in (e) implies via (1) that the com-

position

(25) GrFk−nDRXWn+rHrZ(OX)→ GrFk−nDRXHrZ(OX)→ RHomOX
(Ωk

Z , ωX [r + k]
)

is an isomorphism. On the other hand, since codimZ(Zsing) ≥ k, it follows from [MP22a,
Section 5.2] that the second map in (25) gets identified with the canonical morphism

GrFk−nDRXHrZ(OX)→ GrEk−nDRXHrZ(OX).

We thus conclude that indeed (24) is an isomorphism.

Step 6. Proof of (b)⇒(a). In addition to the map σ :
(
Grr−1

V Bf

)⊕r (t1,t2,...,tr)−−−−−−−→ GrrVBf

that we used in Step 1, we also consider the map δ : GrrVBf
(∂t1 ,∂t2 ,...,∂tr )
−−−−−−−−−→

(
GrrVBf (−1)

)⊕r
.

The key point is to show the following

Claim. The hypothesis in (b) implies that the composition of the canonical morphisms

(26) GrFk+r ker δ ↪→ GrFk+rGrrVBf � GrFk+r cokerσ,

is an isomorphism.

By [CD21, Theorem 1.2], we have an isomorphism of filtered DX -modules

(27) GrWd+ii∗Q
H
Z [d] ∼= GrWn+i ker δ for all i ∈ Z.

In particular, we have Wn ker δ = ker δ (recall that, similarly, the isomorphism (19) implies
Wn−1 cokerσ = 0). Note that the inclusion Wn ker δ ↪→WnGrrVBf induces a canonical filtered
morphism

(28) GrWn ker δ →Wn cokerσ =
WnGrrVBf

WnGrrVBf ∩ imσ
.
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Indeed, the morphsim is well-defined because

Wn−1 ker δ ⊆Wn−1GrrVBf = (s+ r) ·Wn+1GrrVBf =

r∑
i=1

ti∂tiWn+1GrrVBf ⊆ imσ.

We deduce that the canonical map ker δ → cokerσ factors as

ker δ → GrWn ker δ →Wn cokerσ → cokerσ.

Furthermore, the canonical maps GrFk+r ker δ → GrFk+rGrWn ker δ and GrFk+rWn cokerσ →
GrFk+r cokerσ are isomorphisms because of (19) and (27), together with the fact that the
canonical map

GrFp+ri∗Q
H
Z [d]→ GrFp+rGrWd i∗Q

H
Z [d]

is an isomorphism for p ≤ k + 1 by Lemma 3.5. Therefore the claim is now reduced to the
assertion that (28) is a filtered isomorphism. Clearly, (28) is a filtered isomorphism over the
regular locus Zreg due to

ker δ|Zreg = GrrVBf |Zreg = cokerσ|Zreg = ι+OZreg ,

preserving the Hodge filtration, where ι : X → X×Ar is the graph embedding corresponding
to the functions f1, f2, . . . , fr. Therefore (28) is an isomorphism of DX -modules because
its source and target decompose by (27) and (19) as direct sums of simple D-modules,
corresponding to the irreducible components of Z. Moreover, it is even a filtered isomor-
phism thanks to the fact that the Hodge filtration is uniquely determined by the regular
locus [Sai88, (3.2.2.2)]. This completes the proof of the claim.

To conclude the proof, note that the assertion in (b) implies that α̃(Z) ≥ k + r by Theo-
rem 2.3. Therefore we have

GrFk+rGrrVBf = GrFk+rBf/IZ ·GrFk+rBf = GrFk+r cokerσ,

where the first equality follows from the fact that Fk+rV
>rBf =

∑r
i=1 ti · Fk+rV

>r−1Bf by
[CD21, Theorem 1.1]. The claim implies that the composition

GrFk+r ker δ ↪→ GrFk+rGrrVBf
=−→ GrFk+r cokerσ,

is an isomorphism, hence δ is zero on GrFk+rGrrVBf = GrFk+rBf/IZ ·GrFk+rBf . Therefore

∂ti · Fk+rBf ⊆ Fk+rBf + V >r−1Bf ⊆ V rBf + V >r−1Bf ⊆ V >r−1Bf for 1 ≤ i ≤ r,
where the second inclusion comes from the fact that α̃(Z) ≥ k+ r. This implies Fk+r+1Bf ⊆
V >r−1Bf , which is equivalent to α̃(Z) > k + r. This completes the proof of this step and
thus the proof of the theorem. �

We next prove the two corollaries stated in the Introduction:

Proof of Corollary 1.2. The assertion follows from the fact that Z has k-Du Bois singularities
if and only if α̃(Z) ≥ k+ r, while by Theorem 1.1, Z has (k− 1)-rational singularities if and
only if α̃(Z) > k + r − 1. �

Proof of Corollary 1.3. We may assume that Z is irreducible and affine and let Z ↪→ X be
a closed embedding, of codimension r, with X a smooth, irreducible variety. The assertion
to prove is trivial if Z is smooth (with the convention that the empty set has infinite codi-
mension), hence we may and will assume that Z is singular. If s = dim(Zsing) and H is
the intersection of general hyperplanes sections in X, then Z ′ := Z ∩ H is a locally com-
plete intersection variety with nonempty, 0-dimensional singular locus, and α̃(Z ′) = α̃(Z) by
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[CDMO22, Theorem 1.2]. In particular, it follows from Theorem 1.1 that α̃(Z ′) > k+r. Since
codimZ(Zsing) = codimZ′(Z

′
sing), we may replace Z by Z ′ to assume that Zsing is nonempty

and zero-dimensional. We then need to show that d := dim(Z) ≥ 2k + 2.

Let x ∈ Zsing. By (8), we have

α̃(Z) ≤ dim(X)− 1

2
dimC Tx(Z) = (d+ r)− 1

2
dimC Tx(Z).

Since x ∈ Zsing, we have dimC Tx(Z) ≥ dim(Z) + 1 = d+ 1, hence

α̃(Z) ≤ (d+ r)− 1

2
(d+ 1) =

d− 1

2
+ r.

Since α̃(Z) > k + r, we conclude that k + r < d−1
2 + r, hence d > 2k + 1. We thus conclude

that d ≥ 2k + 2. �

4. Non-vanishing result for the Du Bois complex

In this section we show that for singular, d-dimensional, locally complete intersection
varieties Z with k-rational singularities, where k ≥ 1, the cohomology sheaf Hk(Ωd−k

Z ) does
not vanish.

Proof of Theorem 1.5. Note first that Theorem 2.5 gives an isomorphism

Ωk
Z ' RHomOZ

(Ωd−k
Z , ωZ),

and since RHomOZ
(−, ωZ) is a duality, we get an isomorphism

Ωd−k
Z ' RHomOZ

(Ωk
Z , ωZ).

The first isomorphism in the theorem follows by taking that k-th cohomology sheaf.

It is shown in [MP22a, Section 5.2] that since Z has k-Du Bois singularities (more precisely,
since codimZ(Zsing) ≥ k), the sheaf Ωk

Z is the 0-th cohomology of the complex

0→ Symk(NZ/X)∨ → Ω1
X⊗OX

Symk−1(NZ/X)∨ → . . .→ Ωk−1
X ⊗OX

N∨Z/X → Ωk
X⊗OX

OZ → 0,

placed in cohomological degrees −k, . . . , 0. Since this is a resolution of Ωk
Z by locally free

OZ-modules, it follows that

ExtkOZ
(Ωk

Z , ωZ) ' ωZ ⊗OZ
ExtkOZ

(Ωk
Z ,OZ)

' ωZ ⊗OZ
coker

(
TX ⊗OX

Symk−1
OZ

(NZ/X)→ Symk
OZ

(NZ/X)
)
' ωZ ⊗OZ

Symk
OZ

(Q),

where the last isomorphism follows from [Eis95, Proposition A2.2(d)].

In order to see that Hk(Ωd−k
Z )x 6= 0 if x ∈ Z is a singular point, it is enough to consider,

in a neighborhood of x, a closed immersion Z ↪→ X such that TxZ = TxX. In this case the
morphism of locally free OZ-modules

TX ⊗OX
Symk−1

OZ
(NZ/X)→ Symk

OZ
(NZ/X)

is given by a matrix whose entries all vanish at x. We thus conclude that the minimal
number of generators of Hk(Ωd−k

Z )x is equal to rank
(
Symk

OZ
(NZ/X)

)
=
(
e−d+k−1

k

)
, where

e = dimC TxZ, hence it is nonzero since e ≥ d+ 1. This concludes the proof. �
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5. Generation level of the Hodge filtration in terms of the minimal
exponent

In this section we prove the bound on the level of generation in terms of the minimal
exponent.

Proof of Theorem 1.7. Let d = dim(Z) = n − r. The starting point is the observation that
for every mixed Hodge module M on X, the Hodge filtration is generated at level q if
H0GrFp−nDRX(M) = 0 for all p > q. Recall that by (1), we have

GrFp−nDRX(M) ' RHomOX

(
GrFn−pDRX(D(M)), ωX [n]

)
.

If we apply this with M = Hri∗i!QH
X [n] = HrZ(OX), where i : Z ↪→ X is the inclusion, since

D(M) ' i∗QH
Z [d](n), we conclude that

GrFp−nDRXHrZ(OX) ' RHomOX

(
GrF−pDRXi∗Q

H
Z [d], ωX [n]

)
.

If we apply H0(−) on both sides, we conclude that the Hodge filtration on HrZ(OX) is
generated at level q if

(29) ExtnOX

(
GrF−pDRXi∗Q

H
Z [d],OX

)
= 0

for all p > q.

Recall now that for a bounded complex of OX -modules K• and an OX -module F , there
is a spectral sequence

Ei,j1 = ExtjOX
(K−i,F) =⇒ Exti+jOX

(K•,F).

We take K• to be the complex GrF−pDRXi∗Q
H
Z [d], so that

K−` = Ωn−`
X ⊗OX

GrFn−`−pi∗Q
H
Z [d].

Therefore the vanishing in (29) holds if for all j ∈ {0, . . . , n}, we have

ExtjOX

(
Ω
n−(n−j)
X ⊗OX

GrFn−(n−j)−pi∗Q
H
Z [d], ωX

)
= 0,

or equivalently,

ExtjOX

(
GrFj−pi∗Q

H
Z [d],OX

)
= 0.

We conclude that in order to complete the proof of the theorem, it is enough to show the
following claim:

Claim 5.1. For all p ≥ n− dα̃(Z)e and all j ∈ {0, 1, . . . , n}, we have

(30) ExtjOX

(
GrFj−pi∗Q

H
Z [d],OX

)
= 0.

In order to prove the claim, we may and will assume that X is affine and Z is defined by
f1, . . . , fr ∈ OX(X), so we can make use of the corresponding V -filtration. By Theorem 2.2,
for every ` ∈ Z, we have an isomorphism

F`i∗Q
H
Z [d] ' ker

(
F`GrrV (Bf )

∂t1 ,...,∂tr−→
r⊕
i=1

F`Grr−1
V (Bf )(−1)

)
.

Suppose now that α̃(Z) > `. In this case, by definition of the minimal exponent we have
F`+1Bf ⊆ V >r−1Bf and F`Bf ⊆ V rBf . We thus conclude that

(31) F`i∗Q
H
Z [d] ' F`GrrV (Bf ) ' F`Bf/F`V

>rBf .
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On the other hand, it follows from [CD21, Theorem 1.1] that we have

F`V
>rBf =

r∑
i=1

ti · F`V >r−1Bf =

r∑
i=1

ti · F`Bf ,

so that (31) gives

F`i∗Q
H
Z [d] ' F`Bf/(t1, . . . , tr)F`Bf ,

and thus
GrF` i∗Q

H
Z [d] ' GrF` Bf/(t1, . . . , tr)GrF` Bf .

Recall now that by definition we have F`Bf = GrF` Bf = 0 if ` < r and grF` Bf =
⊕
|β|=`−rOX∂

β
t

if ` ≥ r, with each ti acting as multiplication by fi. We thus conclude that if ` ≥ r, then

(32) GrF` i∗Q
H
Z [d] '

⊕
|β|=`−r

OZ∂βt .

We now proceed to prove the claim. Note that since Z is singular, it follows from (8) that
α̃(Z) ≤ n− 1

2(d+ 1), hence n− dα̃(Z)e ≥ b(d+ 1)/2)c ≥ 1.

We first consider the case when p > n−dα̃(Z)e, so that p > 0 and dα̃(Z)e > n− p ≥ j− p
for all j ∈ {0, 1, . . . , n}. By taking ` = j − p, it follows from (32) that we have

GrFj−pi∗Q
H
Z [d] '

{
0 if j − p < r⊕
|β|=j−p−rOZ∂

β
t if j − p ≥ r

.

Clearly, the vanishing in (30) holds if j − p < r. If j ≥ r + p > r, we use the fact that Z is
a complete intersection, so we have locally the Koszul resolution of OZ , of length r, by free

OX -modules. In particular, we have ExtjOX
(OZ ,OX) = 0 for all j > r, proving the claim in

this case.

We next consider the case when p = n−dα̃(Z)e. If j ∈ {0, 1, . . . , n−1}, then dα̃(Z)e > j−p
and we get the vanishing in (30) as above. In order to complete the proof of the claim, it is
thus enough to consider j = n and show that

(33) ExtnOX

(
GrFdα̃(Z)ei∗Q

H
Z [d],OX

)
= 0.

It follows from Theorem 2.2 that we have an inclusion GrFdα̃(Z)ei∗Q
H
Z [d] ⊆ GrFdα̃(Z)eGrrVBf .

Since Extn+1
OX

(−,OX) = 0, we deduce using the long exact sequence of Ext sheaves that we
have a surjection

ExtnOX

(
GrFdα̃(Z)eGrrVBf ,OX

)
→ ExtnOX

(
GrFdα̃(Z)ei∗Q

H
Z [d],OX

)
.

Therefore it is enough to show that the left term is 0.

Note now that it follows from [CD21, Theorem 1.1] that

Fdα̃(Z)eV
>rBf = (t1, . . . , tr)Fdα̃(Z)eV

>r−1Bf = (t1, . . . , tr)Fdα̃(Z)eBf ,

where the second equality follows from the definition of the minimal exponent. Therefore we
have

GrFdα̃(Z)eGrrVBf = GrFdα̃(Z)eV
rBf/(t1, . . . , tr)GrFdα̃(Z)eBf

⊆ GrFdα̃(Z)eBf/(t1, . . . , tr)GrFdα̃(Z)eBf .

Using again the fact that Extn+1
OX

(−,OX) = 0, we see that it is enough to show that

ExtnOX
(GrFdα̃(Z)eBf/(t1, . . . , tr)GrFdα̃(Z)eBf ,OX) = 0.
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This follows from the fact that GrFdα̃(Z)eBf/(t1, . . . , tr)GrFdα̃(Z)eBf is isomorphic to a direct

sum of copies of OZ and ExtnOX
(OZ ,OX) = 0, as follows using the Koszul resolution of OZ

(note that r < n, since we assume that Z is reduced and singular). This completes the proof
of the claim and thus the proof of the theorem. �
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on singular spaces, II, III (Luminy, 1981), 1983, pp. 243–267. ↑7
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