THE MINIMAL EXPONENT AND i-RATIONALITY FOR LOCALLY
COMPLETE INTERSECTIONS
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ABSTRACT. We show that if Z is a locally complete intersection subvariety of a smooth
complex variety X, of pure codimension r, then Z has k-rational singularities if and only
if a(Z) > k + r, where a(Z) is the minimal exponent of Z. We also characterize this
condition in terms of the Hodge filtration on the intersection cohomology Hodge module of
Z. Furthermore, we show that if Z has k-rational singularities, then the Hodge filtration on
the local cohomology sheaf H% (Ox) is generated at level dim(X)—[a(Z)] —1 and, assuming
that k > 1 and Z is singular, of dimension d, that H"(Q% *) # 0. All these results have
been known for hypersurfaces in smooth varieties.

1. INTRODUCTION

It is well-known that rational and Du Bois singularities play an important role in the
hierarchy of singularities of higher-dimensional algebraic varieties. Recently, definitions of
“higher order” versions of these classes of singularities have been proposed, as follows. Sup-
pose that Z is a complex algebraic variety. If Q% is the p-th graded piece of the Du Bois
complex of Z (suitably shifted), then there is a canonical morphism

Qr, — QF

that is an isomorphism over the smooth locus of Z. Following [JKSY21], we say that Z has
k-Du Bois singularities if this morphism is an isomorphism for 0 < p < k. For &k = 0, we
recover the definition of Du Bois singularities.

On the other hand, if u: Z — Z is a resolution of singularities that is an isomorphism
over Z \ Zsing and such that D = ,u_l(Zsing) is a simple normal crossing divisor on Z, then
following [FL22a] we say that Z has k-rational singularities if the canonical morphism

Q) — RM*Q%(log D)

is an isomorphism for 0 < p < k. Again, for kK = 0 this is the classical notion of rational
singularities. Our main goal in this note is to characterize numerically, in the case when Z
is locally a complete intersection, the condition for having k-rational singularities. A similar
characterization for k-Du Bois locally complete intersections has been obtained in [MP22a],
extending work on hypersurfaces in [MOPW21] and [JKSY21].

Suppose that X is a smooth, irreducible, n-dimensional complex algebraic variety and Z
is a locally complete intersection closed subscheme of X, of pure codimension r in X. In
this setting the minimal exponent a(Z) was introduced and studied in [CDMO22]. In the
case r = 1, this is the invariant introduced by Saito in [Sai94] as the negative of the largest
root of the reduced Bernstein-Sato polynomial of Z. In general, a(Z) can be described
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in terms of the Kashiwara-Malgrange V-filtration associated to Z and it is also related to
the Hodge filtration on the local cohomology sheaf H’,(Ox). The minimal exponent can
be considered as a refinement of the log canonical threshold of (X,Z): we always have
let(X, Z) = min {&(Z),r}. Moreover, it is shown in [CDMO22] that &(Z) > r if and only if
Z has rational singularities, extending a result due to Saito [Sai93] in the case of hypersurfaces.

The following is our main result:

Theorem 1.1. If Z is a locally complete intersection subvariety of the smooth, irreducible
variety X, of pure codimension r, then Z has k-rational singularities if and only if a(Z) >
k4 r.

In the case of hypersurfaces, this result was proved independently in [FL22b] and [MP22b)].
The proof we give follows the idea in [FL22b], making also essential use of results from [CD21]
on the Kashiwara-Malgrange V-filtration in the case of higher codimension subvarieties. A
key ingredient in the proof is Saito’s theory of mixed Hodge modules [Sai90].

The characterization of k-Du Bois singularities in [MP22a] for locally complete intersections
can also be formulated in terms of the minimal exponent: it says that, with the notation in
Theorem 1.1, Z has k-Du Bois singularities if and only if a(Z) > k + r. In particular, we
obtain the following

Corollary 1.2. If Z is a complex algebraic variety which is locally a complete intersection
and if Z has k-Du Bois singularities, for some k > 1, then Z has (k—1)-rational singularities.

Another consequence of the numerical characterizations of k-rational and k-Du Bois locally
complete intersection singularities is that k-rational implies k-Du Bois. However, this result
has already been known (it was proved independently in [FL22b] and [MP22a]) and we use
it in our proof of Theorem 1.1.

As a consequence of the result in Theorem 1.1 and of general properties of the minimal
exponent, we obtain an upper bound for the dimension of the singular locus. We note that
if in the following corollary we replace “k-rational” by “k-Du Bois”, then it follows from the
results in [MP22a] that codimyz(Zgng) > 2k + 1.

Corollary 1.3. If Z is a complex algebraic variety which is locally a complete intersection
and if Z has k-rational singularities, then

codimy (Zsing) > 2k + 2.

Let us recall the condition for k-Du Bois singularities in terms of the Hodge filtration
on local cohomology. For every subvariety Z of a smooth complex algebraic variety X and
every i, the local cohomology sheaf H%,(Ox) underlies a mixed Hodge module. As such, it
carries a Hodge filtration F.’HiZ(OX), an increasing filtration by coherent Ox-submodules.
If Z is a locally complete intersection of pure codimension r, then the only nonzero local
cohomology sheaf is H,(Ox). There is another filtration E4H(Ox) on H(Ox), also by
coherent Ox-modules, given by

EyHy(Ox) = {u € Hy(Ox) | T4 u=0} for p>0,

where I is the ideal defining Z. It is shown in [MP22a] that F,H?,(Ox) C E,H7,(Ox) for
all p > 0 and equality for p = k implies equality also for p < k. One defines the cohomological
level of the Hodge filtration on H%(Ox) by

p(Z) =sup {k > 0| FH,(Ox) = EyH(Ox)},
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with the convention that p(Z) = —1 if there are no such k. It is then shown in [MP22a]
that Z has k-Du Bois singularities if and only if p(Z) > k. The condition in terms of the

minimal exponent follows from this and the equality p(Z) = max {|a(Z)] —r,—1}, proved
in [CDMO22].

We characterize k-rationality in a similar fashion. Recall that if X is a smooth irreducible
n-dimensional variety and Z is a closed subvariety of X of pure codimension r, then H%,(Ox)
also carries a weight filtration and the lowest weight piece is W4, H", (Ox), which underlies
a pure Hodge module of weight n + 7 (this Dx-module is the intersection cohomology Dx-
module of Brylinski and Kashiwara [BK81]). We prove the following result, which in the case
of hypersurfaces was proved in [Ola22].

Theorem 1.4. If Z is a locally complete intersection subvariety of the smooth, irreducible,
n-dimensional variety X, of pure codimension r, then for every nonnegtive integer k, we have
a(Z) > k+rif and only if FWyH,(Ox) = ExHY(Ox).

We also show that for singular locally complete intersections that have k-rational singu-
larities, with & > 1, some higher cohomology groups of the graded pieces of the Du Bois
complex do not vanish. This extends the result from [MOPW21, Theorem 1.5] in the case of
hypersurfaces.

Theorem 1.5. Let Z be a locally complete intersection subvariety of the smooth, irreducible,
n-dimensional variety X. If Z has pure dimension d and k-rational singularities, for some
k> 1, then

HE (Q‘;k) o~ Ext’fgz(Q]%,wZ) ~wyz o, Symlfgz Q,
where Q is the cokernel of the canonical map Tx|z — NZ/X. In particular, if Z is singular
at ., then HF* (Q%_k)x #0.

As observed in [MOPW21], such a result imposes restrictions on varieties with quotient
or toroidal singularities. Indeed, if Z is a variety with quotient or toroidal singularities,
then #H° (Q%) = 0 for all p and all 4 > 1; for quotient singularities, this follows from [DB8I,
Section 5] and for toroidal singularities, it follows from [GNAPGP88, Chapter V.4]. On the
other hand, it is well-known that such singularities are rational. By combining Theorems 1.1
and 1.5, we thus obtain

Corollary 1.6. Let Z be a locally complete intersection subvariety, of pure codimension r,
of the smooth, irreducible algebraic variety X. If Z is singular, with quotient or toroidal
singularities, then r < a(Z) <r+ 1.

Our final result concerns the level of generation of the Hodge filtration on H’, (Ox ). Recall
that if M is a Dx-module endowed with a good filtration, where Dy is the sheaf of differential
operators on X, then we have F1Dx - F M C F,11 M, with equality for p > 0 (here F,Dx
is the order filtration on Dx). If equality holds for p > pg, we say that the filtration on M
is generated at level pg. This definition applies, in particular, for the filtered Dx-module
underlying a mixed Hodge module on X.

Theorem 1.7. If Z is a singular, pure codimension r, locally complete intersection subvariety
of the smooth, irreducible, n-dimensional variety X, then the Hodge filtration on H',(Ox) is
generated at level n — [a(Z)] — 1.

When r = 1, this is [MP20, Theorem A]. We also note that it follows from [MP22a,
Theorem 4.2] that the filtration on H7,(Ox) is always generated at level n — r, hence the
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assertion in the above theorem is interesting when &(Z) > r — 1. Furthermore, via the
equivalence in loc. cit., the assertion in Theorem 1.7 admits the following interpretation in
terms of relative vanishing.

Theorem 1.8. Let Z be a singular, pure codimension r, locally complete intersection subvari-
ety of the smooth, irreducible, n-dimensional variety X. If f: Y — X is a proper morphism
that is an isomorphism over X ~ Z, with Y smooth and E = f~Y(Z)q a simple normal
crossing divisor, then

RO logE) =0 for i>n—[a(Z)] - 1.

Outline of the paper. In the next section, we review some basic notions and results that
we will need for the proofs of our main results. Theorem 1.1 and its corollaries, as well as
Theorem 1.4 are proved in Section 3. Theorem 1.5 is proved in Section 4, while Theorem 1.7
is proved in Section 5.

Acknowledgments. We would like to thank Sebastian Olano and Mihnea Popa for many
helpful discussions. We are also indebted to Christian Schnell for some useful suggestions.

2. BACKGROUND OVERVIEW

In this section we recall some definitions and results that we will need. We work over the
field C of complex numbers. By a variety we mean a reduced scheme of finite type over C,
not necessarily irreducible. For a variety Z, we denote by Zgne the singular locus of Z.

2.1. Mixed Hodge modules. We only give a brief introduction to mixed Hodge modules
and refer for proofs and details to [Sai90]. Let X be a smooth, irreducible, n-dimensional
variety. We denote by Dx the sheaf of differential operators on X. For basic facts about Dx-
modules, we refer to [HTTO08]. All the Dx-modules we will consider will be left Dx-modules.
Since some of the results in the literature are stated for right Dy-modules, we recall that
there is an equivalence of categories between left and right Dx-modules such that if M" is
the right Dx-module corresponding to the left Dx-module M, then we have an isomorphism
of Ox-modules
M~ M ®(9X wx.

When dealing with filtered D x-modules, the filtrations on M and M" are indexed such that
the above isomorphism maps Fj,_, M" to F) M ®o, wx for all p € Z.

All filtrations on Dx-modules that we will encounter are assumed to be good filtrations
compatible with the filtration FoDx on Dx by order of differential operators. This means
that they are increasing, exhaustive filtrations by Ox-submodules such that we have

F,Dx - F,MC Fp gM forall p,qeZ,

and there is gg such that this inclusion is an equality for all p > 0 and ¢ > ¢o. In this case
we say that the filtration is generated at level qg.

A mixed Hodge module M = (M, FoM, P, o, WeM) on X consists of several pieces of
data: M is a Dx-module on M (holonomic and with regular singularities), Fe.M is a good
filtration on M (the Hodge filtration), WeM is a finite increasing filtration on M by Dx-
submodules (the weight filtration), and P is a perverse sheaf over Q (sometimes written
as rat(M)), whose complexification is isomorphic via « to the perverse sheaf over C that
corresponds to M via the Riemann-Hilbert correspondence. These data are supposed to
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satisfy a complicated set of conditions that we do not discuss. We refer to (M, F') as the
filtered Dx-module underlying M (though, with an abuse of notation, we sometimes write
Fi. M and Wi M instead of FyM and WM, respectively).

The Tate twist M (k) of a mixed Hodge module M as above has the same underlying
Dx-module, but the two filtrations are shifted by

FZM(/{) = F;_xM and WzM(k) = WisoprM  forall i€ Z.

We note that the mixed Hodge modules on X form an Abelian category and every mor-
phism of mixed Hodge modules is a morphism of Dx-modules, which is strict with respect
to both the Hodge and the weight filtration. There is a duality functor D on this category,
lifting the usual duality functor on holonomic Dx-modules. All our Hodge modules are po-
larizable, so the choice of a polarization implies that if M as above is pure of weight k (that
is, Gr!V(M) = 0 for i # k), we have an isomorphism D(M) ~ M (k). For a general mixed
Hodge module M and for every k € Z, the graded piece Grk,W(M ), with the induced Hodge
filtration, is a pure Hodge module of weight k.

An important example of mixed Hodge module (in fact, the only one that is easy to describe
explicitly) is Q& [n], which is a pure Hodge module of weight n. The underlying Dx-module
is Oy and the Hodge filtration is such that Gri"(Ox) = 0 for all i # 0. The corresponding
perverse sheaf is Qx[n]. Note that since Q¥ [n] has weight n, a choice of polarization gives
an isomorphism D(Q¥ [n]) ~ Q¥ (n)[n].

Given a mixed Hodge module M, with underlying filtered Dx-module (M, F'), the Hodge
filtration makes the de Rham complex of M a filtered complex. The graded pieces are, in
fact, complexes of Ox-modules. More precisely, Grg DRx (M) is the complex

0 — G} (M) = Q% ®oy Gl (M) = ... = Q% ®o, Grl, (M) =0,

placed in cohomological degrees —n,...,0. For example, we have
GrljpDRX (Q)I}’[n]) = Qf,[n -l

We always think of Gr:f)P DRx (M) as an object in the derived category of coherent sheaves
on X. This construction is compatible with proper push-forward (see [Sai88, Section 2.3.7])
and satisfies the following compatibility property with the duality functor by [Sai88, Sections
2.4.5 and 2.4.11]: for every p, we have a canonical isomorphism

(1) GrfDRx (D(M)) ~ RHomo, (GrZ DRy (M), wx/n]).

For future reference, we include the following lemma, in which we consider arbitrary filtered
D x-modules:

Lemma 2.1. If f: (M, F) — (N, F) is a morphism of filtered Dx-modules on X and k € Z,
then the induced morphism
Gr) DRx(f): Gry DRx (M) — Gr) DRx(N)

is an isomorphism (in the derived category) for all p < k if and only if F,f: F,M — F,N s
an isomorphism for all p < k + n.

Proof. The “if” assertion follows directly from the definition of the graded de Rham complex.
For the converse, arguing by induction, it is enough to show that if F}, f is an isomorphism for
allp <k+n-—1and GrfDRX(f) is an isomorphism (in the derived category), then Fji,(f)
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is an isomorphism. By hypothesis, we have a morphism of complexes placed in cohomological
degrees —n,...,0:

0+ Grp (M) » -+ » Q%' @0, Griypy_ (M) » Q% ®0, Gri (M) =+ 0

I L |

0+ Grf(N) » - » Q¥ ' @0y Grf,_1(N) = Q% @0, Grf(N) = 0

such that the vertical maps in degrees # 0 are isomorphisms and such that the induced
map for the 0-th cohomology is an isomorphism. An application of the 5-Lemma gives that
the map GrkF +n(f) is an isomorphism, and another application of the 5-Lemma implies that
Fy 1, f is an isomorphism. O

One can define mixed Hodge modules also on a singular variety Z (if Z can be embedded
in a smooth variety X, then we simply consider mixed Hodge modules on X whose support
is contained in Z). One can consider the derived category of mized Hodge modules on Z,
denoted D’(MHM(Z)). This satisfies a 6-functor formalism. For example, if i: Z < X
is the inclusion, where X is smooth, then the underlying Dx-module of the mixed Hodge
module H? (i,i'Q¥ [n]) is the local cohomology sheaf H(Ox) of Ox along Z.

For every variety Z, if az: Z — pt is the morphism to a point, then one defines Q? =
a*Z(Qﬁ) in D*(MHM(Z)). If Z is smooth, then this coincides (up to a cohomological shift)
with the object that we have already discussed. In general, however, it is a more complicated
object. If X is a smooth, irreducible n-dimensional variety and i: Z — X is a closed
embedding, then by functoriality we have a canonical isomorphism Qg ~ q* Qg, so we have
a canonical isomorphism

(2) D(QY) ~i'Q¥(n)[2n].

For every Z, it is shown in [Sai90, Section 4.5] that Q¥ is of weight < 0, that is, we have
Gr)Y (H#/(QY)) = 0 for i > j. Furthermore, if Z has pure dimension d, then #'(Q¥) = 0 for
1 > d and the intersection cohomology Hodge module

(3) IC,Q" = G}y H'(QF)

is the unique object of MHM(Z) whose restriction to U = Z \ Zging is Qg [d] and which
has no subobject or quotient supported on Zg,,. The corresponding perverse sheaf is the
intersection cohomology complex of Z; if Z is irreducible, then this is simple, hence so is
ICzQH and we have Q = End (IC 7QH ) In general, if Z has N irreducible components, we
have End(IC 2QH ) = QY and a morphism (IC 7QH ) — (IC 2Qf ) is uniquely determined
by its restriction to the smooth locus of Z.

Note that by definition of IC,Q*, we have a canonical morphism
(4) vz: QF[d] — 1C,QM.

Suppose now that X is a smooth, irreducible n-dimensional variety and i: Z — X is a
closed embedding. Let r = n — d. Since ICzQ" = Gr}/ H*(Q¥) and Gr))HY(QY) = 0 for
p > d, it follows using (2) that

(5) .D(ICZQM) ~ Gi",(i,HD(QY)) ~ G 1~ (i,i' Q¥ (n)[2n]) = GV, H(Ox)(n)
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and GrZVH"Z(OX) =0 for p < n+r. We note that this lowest weight piece of H',(Ox) is the
intersection cohomology D-module introduced by Brylinski and Kashiwara in [BK81]; if Z is
irreducible, then it can be characterized as the unique simple Dx-submodule of H7,(Ox).

We also consider the shifted dual v, = D(y)(—d) of vz, that can be identified via (2) to
Z

(6) vy: DICZQM)(—d) = i'Q¥[n + 7](n — d).
Note that since ICzQ is pure of weight d, the choice of a polarization gives an isomorphism
D(ICzQ")(—d) ~1C,QM.

We will be especially interested in the case when Z is a locally complete intersection
subvariety of X, of pure codimension r. In this case H%(Ox) = 0 for all ¢ # r, hence
i'Q¥[n + 7] is a mixed Hodge module on Z. Duality implies that also Q¥[d] is a mixed
Hodge module on Z, hence vz and ), are morphisms of mixed Hodge modules.

2.2. V-filtrations. Suppose that X is a smooth, irreducible, n-dimensional affine variety
and fi,...,fr € Ox(X) = R are nonzero regular functions such that the ideal (f1,..., fr)
defines the closed subscheme Z of X. We consider the graph embedding

X s W=XxA", (z)=(z, filz),..., fr(z))

and the D-module pushforward Bf = 14 Ox (where f stands for (f1,...,f.)). If t1,...,¢,
denote the standard coordinates on A", then we can write

Be= P Rops,

aezgo

where for a = (a1,...,q;), we put 9 = 05" ---9;". The action of R and of 0;, are the
obvious ones, while the actions of D € Derc(R) and of the ¢; are given by

D - hc‘),?éf = D(h)c‘)f‘éf - ZD(fi)hataJre"L&‘ and ti . ha?(Sf = fzhaféf - aihaf‘*eiéf,
i=1
where e1,. .., e, is the standard basis of Z?. In fact, By underlies the pure Hodge module
1+ Q¥L[n], of weight n, with the Hodge filtration given by

FypirBe = @D RO,
la|<p
where for a = (a1,...,0a;), we put |a| = a1 + ...+ a;.
The V-filtration on By has been constructed by Kashiwara [Kas83], extending work of
Malgrange [Mal83] in the case » = 1. It is a decreasing, exhaustive filtration indexed by

rational numbers (V*Bg)yeq. It is discrete and left-continuous and it is characterized by
several properties, the most important of these saying that for every A € Q

t; -V By CV By and 9, - VABy C VA 1B,
and if s = — | Oy,t;, then s+ X is nilpotent on Gr%‘/(Bf) = VB /V>*Bg, where V2B =
Ugsa VB Bt. Note that the Hodge filtration on By induces a Hodge filtration on each Gr{,(Bg).

In fact, a V-filtration exists on ¢ty M, whenever M underlies a mixed Hodge module. In
the case r = 1, the interplay between the Hodge filtration on M and V-filtrations plays an
important role in the definition of mixed Hodge modules. For details about the construction
and properties of V-filtrations, see [BMS06].
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Let i: Z — X be the inclusion. For r = 1, the V-filtration is the key ingredient for the
definition of i'(M) and i*(M) when M is a mixed Hodge module on X. In the case r > 1,
the corresponding description does not follow from the definition of these functors, but it has
been recently proved in [CD21, Theorem 1.2]. We only state this in the case M = Q4[n].

Theorem 2.2. With the above notation, the following hold: the complex

0 — Gl (By)(—r) Luf2ot), @Grv Be)( - — Gl (Bg)(—r) — 0,

placed in cohomological degrees 0, ..., r represents i*i'QX [n] in the derived category of filtered
Dx -modules and the complex

BBy B
0 G}y (Br) 2220 O G (Be) (1) -+ — Grl (Be)(=r) = 0
=1

placed in cohomological degrees —r, ..., 0 represents Z*Z*Qg[n]

2.3. The minimal exponent. We next discuss the minimal exponent for locally complete
intersection varieties, following [CDMO?22]. Let X be a smooth, irreducible, n-dimensional
variety and Z a (nonempty) closed subscheme of X, which is locally a complete intersection
of pure codimension r. Suppose first that X = Spec(R) is affine and Z is defined by the ideal
generated by f1,..., f» € R. The minimal exponent a(Z) is defined by

- sup{y > 0 | o € V7 B¢}, if 6 & V" By;
a(Z) =

7
@) sup{r —1+q+~ | Fy4rBr C V=1t Be}, if 8¢ € V' By.

In general, we consider a cover X = Uy U...U Uy, where each U; is an affine open subset as

above, and put
(~] Z e IIl'Il (~] Z l/ ) .
( ) i;Zﬂllfﬁéw ( Z)

It follows from [BMS06, Theorem 1] that we always have min {a(Z),r} = lct(X, Z), the log
canonical threshold of the pair (X, Z). Therefore the minimal exponent is 1nterest1ng precisely
when lct(X, Z) = r, in which case Z is automatically reduced (see [CDMO22, Remark 4.2]).
Moreover, it follows from [CDMO22, Corollary 1.7] that Z has rational singularities if and only
if @(Z) > r. One can also show that Z is smooth if and only if &(Z) = oo; in fact, if z € Zis a
singular point, then we have the following more precise bound (see [CDMO22, Remark 4.21}):

(8) a(2) <n—3dimc T, 2.
The minimal exponent &(Z) depends on the ambient variety X, but in a predictable way:

the difference a(Z) — dim(X) only depends on Z (see [CDMO22, Proposition 4.14]).

When r = 1, the minimal exponent was defined by Saito [Sai94] as the negative of the

largest root of the reduced Bernstein-Sato polynomial Ez(s). The fact that this agrees with
the above definition is a consequence of [Sail6, (1.3.8)].

Recall now that the Dx-module H%(Ox) underlies a mixed Hodge module on X, namely
H" (z*z'Qg[n]), where ¢: Z — X is the inclusion. We thus have a canonical filtration on

1We note that what we denote by F,,Br here is denoted by F, B in [CDMO22].
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1%, (Ox), the Hodge filtration (FPH%(OX))p>0' We have a second filtration, the order fil-
tration (EpHTZ(OX))p>07 given by

EyHY(Ox) = {u € Hy(Ox) | I5 =0} = Im(Exty (Ox /15T, Ox) — Hy(Ox)),

where Iz is the ideal defining Z in X (see [MP22a, Proposition 3.11]). It is a general fact
that F,H,(Ox) C E,H,(Ox) for all p > 0 (see [MP22a, Proposition 3.4]) and the following
result shows that the minimal exponent governs how far these two filtrations agree (see
[CDMO22, Theorem 1.3]):

Theorem 2.3. If X is a smooth, irreducible variety and Z is a locally complete inter-
section subvariety of pure codimension r in X, then for a monnegative integer k, we have
F,H,(Ox) = EyHY, (Ox) for 0 < p <k if and only if a(Z) > r + k.

2.4. k-Du Bois singularities. To a variety Z, Du Bois associated in [DB81] a complex Q7
known now as the Du Bois complex of Z. This is a filtered complex that agrees with the de
Rham complex QF, with the “stupid” filtration, when Z is smooth. This allows extending
to singular varieties some important cohomological properties of the de Rham complex of
smooth varieties, see [PS08, Chapter 7.3] for an introduction to this topic.

We are interested in the shifted truncations Q) := Grh.(Q%)[p], which are objects in the
bounded derived category ch’oh(Z ) of coherent sheaves on Z. For every p, there is a canonical
morphism QF, — QF that is an isomorphism over the smooth locus of Z. Following [JKSY21],
we say that Z has k-Du Bois singularities, for some nonnegative integer k, if these morphisms
are isomorphisms for all 0 < p < k. Note that for k¥ = 0, we recover the familiar notion of
Du Bois singularities.

As we have mentioned in the Introduction, it was shown in [MP22a, Theorem F] that if X is
a smooth, irreducible variety and Z is a locally complete intersection subvariety of X, of pure
codimension r, then Z has k-Du Bois singularities if and only if F,H",(Ox) = E,H7,(Ox)
for p < k. In terms of minimal exponents, this condition can be rephrased as a(Z) > r + k.
The proof of this result in loc. cit. extends the argument in the case of hypersurfaces, for
which the two implications had previously been proved in [MOPW21] and [JKSY21].

Remark 2.4. If Z is a locally complete intersection variety with k-Du Bois singularities,
then codimz(Zging) > 2k + 1. Indeed, this is a local statement, hence we may assume that
Z has pure dimension (we use the fact that Z is Cohen-Macaulay) and that it is a closed
subvariety of the smooth irreducible variety X. In this case the assertion follows by combining
[MP22a, Corollary 3.40 and Theorem F].

The connection between the Du Bois complex and mixed Hodge modules is provided by the
following result of Saito. If Z is a closed subvariety of the smooth, irreducible, n-dimensional
variety X and i: Z < X is the inclusion, then it is a consequence of [Sai00, Theorem 4.2]
that for every p, we have an isomorphism

(9) 9 [—p] ~ Grf DRx (i.Q%)
in D(l:)oh

(10) Q) [—p] ~ RHomo, (Grh_, DRxi.i' Q¥ [n], wx).

(X). In light of (1) and (2), this is equivalent to

For an easy proof of this isomorphism, see [MP22a, Proposition 5.5].
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2.5. k-rational singularities. Given a variety Z, by a strong log resolution of Z we mean a
proper morphism g : Z — Z that is an isomorphism over Z \ Zgng, such that Z is smooth and
E = 1 Y(Zsing) is a simple normal crossing divisor. For a nonnegative integer k, following
[FL22a], we say that Z has k-rational singularities if the canonical morphism

(11) QO — R,u*Q%(logE)

is an isomorphism for all p < k. This is easily seen to be independent of the log resolution
(see for example [MP22b, Lemma 1.6]). Note that for £k = 0 we recover the classical notion
of rational singularities. This condition implies that Z is normal, hence in particular, every
connected component of Z is irreducible. The notion of k-rational singularities has been
extensively studied in [FL22a], [FL22b], [FL22c]|, [MP22b].

For our purpose it will be convenient to consider a different description of k-rational sin-
gularities. Recall from [MP22b, Section 6] that for every variety Z of pure dimension d and
every nonnegative integer k, we have a canonical morphism

(12) Vi QF - RHomo, (24 F,wy[—d]),

where wY, is the dualizing complex of Z. This is defined as follows: suppose that u: Y — Z is
an arbitrary resolution of singularities (we only require that Y is smooth and p is proper and
an isomorphism over a dense open subset of Z). By functoriality of the Du Bois complex,
for every nonnegative integer k, we have a canonical morphism ay: Q% — Ry, 0%, On the
other hand, on Y we have a canonical isomorphism

QF = RHomo, (7, wy[~d)).

By pushing this forward and using Grothendieck duality for u, we obtain an isomorphism [y
as the composition

R — Ru.RHomo, (ngk,w;/[—d]) = RHomo, (R,u*ngk,wé[—d]).

The morphism ¢, is obtained as the composition o , o i o oy, where we put o , =
RHomo, (cq—k,wy[—d]). It is shown in [MP22b, Proposition 6.1] that this definition does
not depend on the choice of resolution of singularities.

With this notation, we have the following characterization of k-rational singularities in the
locally complete intersection case, see [MP22b] (in loc. cit. one assumes that Z is irreducible,
but the argument works in general):

Theorem 2.5. If Z is a locally complete intersection variety of pure dimension d and k is
a nonnegative integer, then Z has k-rational singularities if and only if Z has k-Du Bois
singularities and the morphism 1y : Ql% — RHomp, (Q%ﬁk,wz) is an isomorphism.

It will be important for us to use an interpretation of the morphism 1t from [FL22b,
Appendix], as the graded de Rham of a morphism of mixed Hodge modules. Let Z be a
variety of pure dimension d and pu: Y — Z any resolution of singularities, with u a projective
morphism. Note that by functoriality we have a canonical morphism of mixed Hodge modules
a: Q[d] — u.Q[d]. On the other hand, since Q#[d] is pure of weight d, on Y we have a
canonical isomorphism Q¥ [d] — D(Q#[d])(—d), which after pushing forward to Z and using
the compatibility of pushforward with duality, gives an isomorphism

B: Qi [d] — D (QY [d]) (—d) — D (1. Q¢ [d]) (—d).



THE MINIMAL EXPONENT AND k-RATIONALITY 11

We then obtain a morphism vz in the derived category of mixed Hodge modules on Z as the
following composition

(13) QY [d] - 1.QY ] - D (. QY [d)) (—d) > D(QY[d))(—d),
where o = D(a)(—d).

If Z is a closed subvariety of the smooth, irreducible variety X and i: Z <— X is the
inclusion, then using the compatibility of the graded de Rham complex with direct image
and duality, we see that for every k € Z we have

o = Grl', DRx (ixa)[k — d], Br = Gr¥} DRx (i.3)[k — d], ay_, = Grl, DRx (i,a")[k — d],
hence 1 = Gr¥’, DRx (i.¢z)[k — d).

Remark 2.6. It follows from the definition of ¢z that 1% := D(¢z)(—d) can be identified
with ¥ .

Remark 2.7. Suppose now that X is a smooth, irreducible, n-dimensional variety and ¢: Z —
X is a closed embedding, where Z is a locally complete intersection subvariety of X, of pure
codimension r. Let d = n — r. As we have already mentioned, in this case, the morphisms

QY[d) 2% 10,Q" and D(IC,QY)(~d) % D(QY[d)(~d)

are morphisms of mixed Hodge modules, with v surjective and ~), injective.

Since Yz is a morphism between two mixed Hodge modules on Z, we obtain the same
morphism if we take H%(—); in other words, 17 agrees with the composition

(14) Q7 ld] = H° (1. QY [d]) — D(H(11. Q' [d])) (=d) — D(QZ [d]) (—d).

On the other hand, since Q¥ [d] is pure of weight d, so is H° (M*Qg[d]), see [Sai88, Théoreme 1].
Since Griy, (Q¥[d]) = 0 for i > d, it follows that the composition in (14) further factors as
(15) Q7 [d] % 102Q" — H® (1. Qi [d]) — D (H (1. Q3 [d])) (—d)

= D(IC,Q)(~d) 2% D(QY[d])(—d).

We also note that the intermediate composition
1C2Q" = H°(1.QY [d]) — D(H"(1.Q¥[d])) (~d) — D(IC2Q")(~d)

is always an isomorphism. Indeed, a morphism IC,Q" — D(IC zQ™)(—d) is uniquely
determined by its restriction to a dense open subset of the smooth locus of Z, and on a
suitable such subset over which p is an isomorphism this composition is the identity.

For every k, it follows from Lemma 2.1 that Grg DRx (ixtz) is an isomorphism for all p < k
if and only if Fji.1pz is an isomorphism for every p < k+ n. Since 4,77 is surjective and .7y
is injective, it follows from the above discussion that Grg DRx (ix®z) is an isomorphism for
all p < k if and only if

Fyivyz: Fpi.QY[d] — F,i,JCzQ" and

Fpratsyy: FpraD(i1C2QM) = Fy Wy Hy (Ox) — FpraiD(QZ[d]) = Fp—r My (Ox)

are isomorphisms for all p < k + n.
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Remark 2.8. We note that in [FL22b] one says that a variety Z of pure dimension d has
k-rational singularities if the composition
¥ d—k e
Qy, — QF RN RHomo, (QZ W [—d])

is an isomorphism for all p < k. It is shown in [FL22b, Corollary 3.17] that this definition
is equivalent to the definition we use in this paper if codimyz(Zsng) > 2k + 1. Furthermore,
it is shown in [FL22b, Theorem 3.20] that with their definition as well, if Z is a locally
complete intersection and has k-rational singularities, then Z has Du Bois singularities, and
thus codimyz(Zging) > 2k + 1 by Remark 2.4. We thus conclude that for locally complete
intersection varieties, the two definitions of k-rational singularities agree.

3. CHARACTERIZATIONS OF Kk-RATIONALITY FOR LOCALLY COMPLETE INTERSECTIONS

Let X be a smooth, irreducible variety of dimension n and Z be a locally complete inter-
section subvariety of pure codimension r in X. Let d = n — r be the dimension of Z and
i: Z — X the inclusion. We will freely use the notation introduced in the previous section.
The following is the main result of this section, which implies several of the statements in
the introduction.

Theorem 3.1. With the above notation, for every nonnegative integer k, the following as-
sertions are equivalent:

(a) a(Z) > k+r;
(b) FixWniH(Ox) = ExH7(Ox);
(¢) The morphism
(16) Fp—l—ﬂ*Q?W] - p+Ti*ICZQH7
induced by vz and the composition

(17) EpWairH7(Ox) = FpyHz(Ox) = EpHZ(Ox),

induced by vy, are isomorphisms for p < k.
(d) Z has k-Du Bois singularities and the morphism

Y : Q]% — RHomp, (Q%ﬁk,wz)

is an tsomorphism;
(e) the canonical morphism

0F — Grf DRx (i,1C2Q")[p — d]
is an isomorphism (in the derived category) for p < k.
Remark 3.2. We note that the morphism in (e) is the composition
0f — QY ~ Gr" DRx (i,Q% )[p] = Gr’ ,DRx (i,1C2Q")[p — d],
where the second map is induced by vz: Q¥ [d] — 1CzQF.

Remark 3.3. Note that the assertion (d) in the theorem is equivalent to the fact that Z has
k-rational singularities by Theorem 2.5. Therefore the equivalence (a)<(d) is the content of
Theorem 1.1, while the equivalence (a)<(b) is the content of Theorem 1.4.
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We proceed with the proof of Theorem 3.1 in several steps, by showing the following
implications:

(@) = (b) = (¢) = (d) + (e), (d) = (c), and (&) = (b) = (a).

Proof of Theorem 3.1. Since all assertions are local, we may and will assume that X is affine
and Z is defined in X by fi,..., fr € Ox(X). In particular, we will be able to consider the
V-filtration corresponding to these functions. We denote by Iz the ideal defining Z in X.

Step 1. Proof of (a)=(b). Let W, be the monodromy filtration on Gr{,Bf, uniquely
characterized by:

o (s+a) WGty By C W,_oGr{,Br and
o (s+a): Grijr{‘}Bf = GI’KjGI'?/{'Bf is an isomorphism for all j > 1.
Explicitly, this is given by
(18) Wi4iGr{, Bs = Z ker((s + o) ™) NnIm((s + a))
J

Consider the map o: (Gr’{/_le)@T M) Gry, Bg. By [CD21, Theorem 1.2], for every 4,

we have an isomorphism of filtered D x-modules

(19) GrY, Hy (Ox) ~ (Grgv cokero, F[—r]) forall i€ Z.
Recall that we know that W; 1", (Ox) = 0 for i < n, hence
(20) Wit Hy(Ox) = Gry),  Hy (Ox) ~ (Gr)) coker o, F[—7]).

Since a(Z) > k+r, it follows from the definition of the minimal exponent that Fj .1 Bg C
V>""1B¢, hence

.
(s+7) FrrBr C th’ - Fyyr41Bg C V7" By.
i=1
We thus have

(21) Fi1,Gry, By C W,,Gry, By

because ker(s + ) C W, Gr{,Bg by (18). This implies that Fj, cokero C W, coker o, and
using (20) we conclude that

F WMz (0x) = FrHz(Ox) = ExHz(Ox),
where the last equality follows from Theorem 2.3.
Step 2. Proof of (b)=-(c). We first prove the following
Lemma 3.4. The equality FiW,H(Ox) = EyH7,(Ox) implies
FWhihHZ(Ox) = EyHZ(Ox)  for all p < k.

Proof. Since W,,1,H"(Z) is a Hodge module supported on Z, we have
IZ . Fan-ﬁ-’/‘H%(OX) - Fp—IWn+rH%(OX) for all pE Z

(see [Sai88, Lemme 3.2.6]). On the other hand, it follows easily from the definition of the
filtration EaH%,(Ox) that we have

Iz - Ep/HrZ(Ox) = Ep_lfHTZ(Ox) forall p>1.

The assertion in the lemma now follows by decreasing induction on p. O
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We next use duality to prove the following
Lemma 3.5. If F,W,, 1, " (Ox) = F,H,(Ox) for some p € Z, then the surjective map
Fpir418:QF [d] = Fpiri18.1C,QY
induced by vz is an isomorphism.
Proof. The equality F,W,,H%(Ox) = F,H,(Ox) is equivalent to FpGrmHjHTZ((’)X) =0

for all 5 > 1. Since GrmT +;H7(Ox) underlies a polarizable pure Hodge module of weight
n + r + j, the choice of a polarization gives an isomorphism of filtered D x-modules:

(22) D(Gr,,  H(Ox)) =5 (G, HH(0x)) (n+7 + ).
On the other hand,
D(GrT‘/LIerJerTZ(OX)) = Gr‘j/nfrij (H%(OX))

=G, (:QF [d)(n) = (Gry;i.QF d) ().
Combining the two equations (22) and (23) yields

(GII?"/LZ-T-FjHTZ(OX)) (r+j)= Grg‘iji*QIZ{[d]»

as filtered Dx-modules, which implies

Fyp1-Gr) H (Ox) = Fyyra Gryl i, QF [d).
We have seen that our hypothesis gives FpH,jGrmTHH%(OX) = 0 for 5 > 1, hence

Fpyr1GrY ;i QY [d] = 0 for j > 1 and thus Fpy,11Wg-1i.QF[d] = 0. This implies the
conclusion of the lemma by definition of vz. O

(23)

Returning to the proof of the implication (b)=-(c), note that the assertion in Lemma 3.4

gives the fact that the morphism (17) is an isomorphism for p < k. Similarly, by combining
Lemmas 3.4 and 3.5 we conclude that the morphism (16) is an isomorphism for p < k (in
fact, for p < k + 1). We thus have the assertion in (c).
Step 3. Proof of (c)=(d)+(e). The surjectivity of the morphism in (17) implies, in
particular, that Z is k-Du Bois by [MP22a, Theorem F]. Since ¢, = Gr’, DRx (ix¢z)[k — d],
we see that v, is an isomorphism if and only if Grf +DRx (ix17) is an isomorphism, which
by (1) holds if and only if Gri_,DRx (i«t)z) is an isomorphism (recall that D(1z) = 1z (d),
see Remark 2.6). We thus get assertion in (d).

Similarly, once we know that Z is k-Du Bois, the assertion in (e) is equivalent with the fact
that Grf’ DR x (ix77) is an isomorphism for p < k, which is equivalent by (1) with the fact
that GrgdeRX (i+7y}) is an isomorphism for all p < k. This is implied by Fj,4 i} being an
isomorphism for all p < k, but this is precisely the morphism F,W, 4, H%(Ox) — FyH,(Ox).
Therefore we have the assertion in (e) as well.

Step 4. Proof of (d)=-(c). It follows from Theorem 2.5 that the conditions in (d) are
equivalent to Z having k-rational singularities. In particular, since we have these conditions
for k, we also have them for k—1. In particular, we know that v, = Grg_dDRX(i*wz) [p—d] is
an isomorphism for all p < k. Using (1) and the fact that D(¢z) = ¥ z(d), we conclude that
GrﬁldDRX (2x1z) is an isomorphism for all p < k. Lemma 2.1 thus implies that Fj, i,z is
an isomorphism for all p < k. As we have seen in Remark 2.7, this implies that the morphisms
(16) and (17) are isomorphisms for all p < k (for the latter morphism, we also use the fact
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that F,H,(Ox) = E,H(Ox) for p < k, due to the fact that Z has k-Du Bois singularities).
We thus have the condition in (c).

Step 5. Proof of (e)=-(b). If k = 0, applying RHomo, (—,wx|[r]) to the isomorphism in
(e) gives via (1) an isomorphism
GrE DRx W,y Hy (Ox) — Grf, DRy HL (Ox) — Extp (O, wx)

note that Ext’y (O, wx) = 0 for i # r since Z is a locally complete intersection of pure
Ox
codimension r). We have

GrljnDRX/HTZ(Ox) =wx oy FoH'7(Ox) and

Grf, DRxW,, 1, Hy(Ox) = wx ®0y FoWnirHy(Ox),
while the image of the inclusion Ext, (Oz,wx) = wx ®oyx HZ(Ox) is wx ®oy EoHz(Ox).
We thus obtain the assertion in (b) in this case.

From now on we assume k > 1. Arguing by induction on k, we may and will assume that
FWhhH,(Ox) = E,H (Ox) for p < k — 1. In particular, we know that Z has (k — 1)-Du
Bois singularities, and thus codimz(Zsng) > 2k —1 > k by [MP22a, Corollary 3.40]. We only
need to prove that the injection FyW;, 1, H7(Ox) — EyH7,(Ox) is indeed an isomorphism.
Moreover, because we know the corresponding assertions for the lower pieces of the filtrations,
it follows from Lemma 2.1 that it is enough to show that the induced morphism

(24) Gry_,DRxW, 1, Hy(Ox) — Gry_,DRxHY(Ox)
is an isomorphism (in the derived category).
Applying RHomo, (—,wx|[r +k]) to the isomorphism in (e) implies via (1) that the com-
position
(25)  Gri_,DRxW, 1, H}(Ox) — Grf_,DRxHY(Ox) = RHomo (W, wx[r + k])

is an isomorphism. On the other hand, since codimz(Zsng) > k, it follows from [MP22a,
Section 5.2] that the second map in (25) gets identified with the canonical morphism

GrfﬁnDRx’H%(Ox) — GI‘E?nDRX}[%(Ox).
We thus conclude that indeed (24) is an isomorphism.

Step 6. Proof of (b)=(a). In addition to the map o: (Gr(/_le)EBT (tt2rtr)

(8151 78t2 7777 8t7~)
L,

Gry, B

that we used in Step 1, we also consider the map ¢: Gry, B (Gr}"/Bf(—l))@T.
The key point is to show the following

Claim. The hypothesis in (b) implies that the composition of the canonical morphisms
(26) Gry,, kerd < Grf,, Gr}, By — Grf.,, coker o,
is an isomorphism.

By [CD21, Theorem 1.2], we have an isomorphism of filtered Dx-modules
(27) Gryl, ;i Q% [d) = Gr) ;kerd for all i€ Z.

In particular, we have W, kerd = ker ¢ (recall that, similarly, the isomorphism (19) implies
W,,—1 coker o = 0). Note that the inclusion Wy, ker § — W,,Gr{, B induces a canonical filtered
morphism

W, Gry, B
WnGIJ{/Bf Nimo’

(28) GrY ker § — W, coker o =
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Indeed, the morphsim is well-defined because

T
Wh_1keré C Wy,_1Gry,Bs = (s + 1) - Wy41Gry, By = Ztiatiwn_i_lGI'T"/Bf Cimo.
i=1
We deduce that the canonical map ker § — coker o factors as
ker § — Grl ker § — W, coker o — coker o.

Furthermore, the canonical maps Grj. kerd — Grf,, G,V kerd and Grf,, W, cokero —
Gri 4 coker o are isomorphisms because of (19) and (27), together with the fact that the
canonical map

Gry,, QY [d] — Gry,, Gry'i.Q[d]
is an isomorphism for p < k + 1 by Lemma 3.5. Therefore the claim is now reduced to the
assertion that (28) is a filtered isomorphism. Clearly, (28) is a filtered isomorphism over the
regular locus Zee due to

kerd|z,, = Gry, Bt|z,., = cokero|z,, = 11Oz,

preserving the Hodge filtration, where t: X — X x A" is the graph embedding corresponding
to the functions fi, fo,..., fr. Therefore (28) is an isomorphism of Dx-modules because
its source and target decompose by (27) and (19) as direct sums of simple D-modules,
corresponding to the irreducible components of Z. Moreover, it is even a filtered isomor-
phism thanks to the fact that the Hodge filtration is uniquely determined by the regular
locus [Sai88, (3.2.2.2)]. This completes the proof of the claim.

To conclude the proof, note that the assertion in (b) implies that &(Z) > k + r by Theo-
rem 2.3. Therefore we have

Gr£+,,Gr7‘}Bf = Gr£+rBf/IZ . Gr£+TBf = GrgJH, coker o,

where the first equality follows from the fact that Fj.,.V>"Bf = > i_, t; - Fry V"1 Bg by
[CD21, Theorem 1.1]. The claim implies that the composition

Grf L kerd — Grf 4G, By = Grf 4 coker o,
is an isomorphism, hence § is zero on Grf,, Gr}, By = Gry. Be/lz - Grl 1 Bs. Therefore
O, - FyywBs C FyyBe + V7" !B CV By + V" 1B, CV>" 1By for 1<i<r,

where the second inclusion comes from the fact that a(Z) > k+r. This implies Fj4,41Bf C
V>""1B¢, which is equivalent to a(Z) > k + r. This completes the proof of this step and
thus the proof of the theorem. O

We next prove the two corollaries stated in the Introduction:

Proof of Corollary 1.2. The assertion follows from the fact that Z has k-Du Bois singularities
if and only if &(Z) > k + r, while by Theorem 1.1, Z has (k — 1)-rational singularities if and
only if &(Z) > k+r — 1. O

Proof of Corollary 1.3. We may assume that Z is irreducible and affine and let Z — X be
a closed embedding, of codimension r, with X a smooth, irreducible variety. The assertion
to prove is trivial if Z is smooth (with the convention that the empty set has infinite codi-
mension), hence we may and will assume that Z is singular. If s = dim(Zsng) and H is
the intersection of general hyperplanes sections in X, then Z' := Z N H is a locally com-

plete intersection variety with nonempty, 0-dimensional singular locus, and &(Z') = a(Z) by
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[CDMO22, Theorem 1.2]. In particular, it follows from Theorem 1.1 that a(Z’) > k+r. Since

codimz(Zsing) = codimz:(Z,,), we may replace Z by Z' to assume that Zgng is nonempty

and zero-dimensional. We then need to show that d := dim(Z) > 2k + 2.
Let € Zgng. By (8), we have

a(Z) < dim(X) — %dimc Tp(Z)=(d+r)— %dimc T.(Z).

Since x € Zging, we have dimg T(Z) > dim(Z) + 1 = d + 1, hence

d—1

a(Z) < (d+r) (d+1):T+r.

1
2
Since a(Z) > k + r, we conclude that k +r < % + 7, hence d > 2k + 1. We thus conclude
that d > 2k 4 2. O

4. NON-VANISHING RESULT FOR THE DU B0OIS COMPLEX

In this section we show that for singular, d-dimensional, locally complete intersection
varieties Z with k-rational singularities, where k& > 1, the cohomology sheaf H* (Q%_k) does
not vanish.

Proof of Theorem 1.5. Note first that Theorem 2.5 gives an isomorphism
Q% ~ RHomp, (Q%_k,wz),
and since RHomp, (—,wz) is a duality, we get an isomorphism
QLF ~ RHome, (%, wz).
The first isomorphism in the theorem follows by taking that k-th cohomology sheaf.
It is shown in [MP22a, Section 5.2] that since Z has k-Du Bois singularities (more precisely,
since codimy(Zsing) > k), the sheaf Q’% is the 0-th cohomology of the complex
0 — Sym* (N7 x)" = Qx @0, Sym* 1 (Nz/x)Y = ... = Q§<_1®0XNZV/X — Q520,07 =0,

placed in cohomological degrees —k,...,0. Since this is a resolution of Q’% by locally free
Oz-modules, it follows that

Exth, (N, wy) = wy @0, Exth (A, OF)

~ wy ®o, coker(Tx ®oy Symg ' (Nz/x) — Symb, (N x)) ~ wz o, Symp,(Q),
where the last isomorphism follows from [Eis95, Proposition A2.2(d)].
In order to see that Hk(ﬂcé_k)x # 0 if x € Z is a singular point, it is enough to consider,

in a neighborhood of z, a closed immersion Z < X such that T,Z = T, X. In this case the
morphism of locally free Oz-modules

Tx ®ox Symg, ' (Nzyx) = Symf, (Nz/x)

is given by a matrix whose entries all vanish at . We thus conclude that the minimal
number of generators of H*(Q% %), is equal to rank(Symlng Nz/x)) = (67%]@71), where

e = dimc T, Z, hence it is nonzero since e > d + 1. This concludes the proof.
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5. GENERATION LEVEL OF THE HODGE FILTRATION IN TERMS OF THE MINIMAL
EXPONENT

In this section we prove the bound on the level of generation in terms of the minimal
exponent.

Proof of Theorem 1.7. Let d = dim(Z) = n — r. The starting point is the observation that
for every mixed Hodge module M on X, the Hodge filtration is generated at level ¢ if
HOGrg_nDRX (M) = 0 for all p > g. Recall that by (1), we have

Gr}_,DRx (M) ~ RHomo, (Grh_ ,DRx(D(M)),wx|n]).

If we apply this with M = H"i,i'Q¥ [n] = H(Ox), where i: Z < X is the inclusion, since
D(M) ~ i.Q¥[d](n), we conclude that

GrganRXHTZ(OX) ~ RHomo, (GrprRXi*Qg[d], wx|[n]).

If we apply H°(—) on both sides, we conclude that the Hodge filtration on H%(Ox) is
generated at level q if

(29) Exty  (Grf DRxi,Q%[d], Ox) =0
for all p > q.

Recall now that for a bounded complex of Ox-modules K*® and an Ox-module F, there
is a spectral sequence

= Eatl, (K7, F) = Eaty!(K*,F).
We take K*® to be the complex GrprRXi*Qg[d], so that

Kt =@t o, Gt i QEd).
Therefore the vanishing in (29) holds if for all j € {0,...,n}, we have

Eatp, (W " oy Gy i»QZ [d],wx) =0,
or equivalently, .
Exty, (Gri,i.QY[d], Ox) =

We conclude that in order to complete the proof of the theorem, it is enough to show the
following claim:

Claim 5.1. For all p > n — [a(Z)] and all j € {0,1,...,n}, we have
(30) Exty, (Grj ,i.QYF[d], Ox) =0.
In order to prove the claim, we may and will assume that X is affine and Z is defined by

fiy-ooy fr € Ox(X), so we can make use of the corresponding V-filtration. By Theorem 2.2,
for every ¢ € Z, we have an isomorphism

Fi,.QY [d] ~ ker (F,G1},(B) a“’ i @FgGr -1)).

Suppose now that a(Z) > ¢. In this case, by definition of the minimal exponent we have
Fy1Be C V>""1B¢ and F;By C V" B¢. We thus conclude that

(31) Fi.QY[d) ~ F,Gr},(Bg) ~ F,By/F,V>" Bs.
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On the other hand, it follows from [CD21, Theorem 1.1] that we have

T T
FV>"By =Y ti- FV>"'By=> t;- F;By,
i=1 i=1
so that (31) gives
Fﬂ*Qg[d] ~ Fng/(tl, oo ,tr)Fng,
and thus
Grl'i, Q¥ [d] ~ Grl'Be/(t1,. .. ,t,)Crl By.
Recall now that by definition we have FyBf = Grfo =0if¢ < rand grfo = ®|5\=f—r OXOE
if £ > r, with each t; acting as multiplication by f;. We thus conclude that if ¢ > r, then

(32) al'i.Qfd ~ @ 029,
|Bl=t—r
We now proceed to prove the claim. Note that since Z is singular, it follows from (8) that
a(Z) <n-— %(d—i— 1), hence n — [a(Z)] > |(d+1)/2)] > 1.

We first consider the case when p > n— [a(Z)], so that p > 0 and [a(Z)]| >n—p>j—p
for all j € {0,1,...,n}. By taking £ = j — p, it follows from (32) that we have

0 ifj—p<r
®|ﬂ\:j—p—r Ozatﬁ ifj—p=r
Clearly, the vanishing in (30) holds if j —p < r. If j > r+ p > r, we use the fact that Z is
a complete intersection, so we have locally the Koszul resolution of Oz, of length r, by free
Ox-modules. In particular, we have 5937%)( (Oz,0x) =0 for all j > r, proving the claim in
this case.

We next consider the case when p = n—[a(Z)]. If j € {0,1,...,n—1}, then [a(Z)]| > j—p
and we get the vanishing in (30) as above. In order to complete the proof of the claim, it is
thus enough to consider j = n and show that

(33) Exty, (Crly21i-QF[d], Ox) = 0.

Grf i, QY [d] ~ {

It follows from Theorem 2.2 that we have an inclusion Gr%( 7 QY [d] C Grfa( 7)1 Gy B

Since Ext?gt(l(—, Ox) = 0, we deduce using the long exact sequence of £xt sheaves that we
have a surjection

Exty, (Griz ) Gri By, Ox) — Extd  (CGriz £711.QF [d], Ox).
Therefore it is enough to show that the left term is 0.
Note now that it follows from [CD21, Theorem 1.1] that
Frazn V™" Be = (t1, - tr)Flazn V""" Be = (t1, ..., tr) Fla(z) Be.

where the second equality follows from the definition of the minimal exponent. Therefore we

have
GI‘%(Z)" GI‘T“/Bf == GI‘F—‘&(Z)] VTBf/(tl, e ,tT)GrF&(Z)" Bf

g Grfa(z)1 Bf/(tl, ey tT)GrF&(Z)] Bf.
Using again the fact that Ext?);l(—, Ox) = 0, we see that it is enough to show that
Eivt%x (GI‘%(Z)" Bf/(tl, ey tr)Gr%(z)] Bf, OX) =0.
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This follows from the fact that Gr?&(z)] Bg/(t1,... ,tr)GrFa(Zﬂ By is isomorphic to a direct

sum of copies of Oz and Exty, (Oz,0x) = 0, as follows using the Koszul resolution of Oz
(note that r < n, since we assume that Z is reduced and singular). This completes the proof
of the claim and thus the proof of the theorem. O
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